Computer Vision I

Jannik Presberger, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/25-winter/cv1/

Winter Term 2025/2026

Classification of digital images

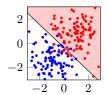
Problem. Given a finite set V of pixels, the set $X=\mathbb{R}^V$ of images, a finite image collection $x:S\to X$ and binary decisions $y:S\to \{0,1\}$, **find** a function $g\colon X\to \{0,1\}$ to make such a decision for **any** image $x\in X$.

Example. Learning to identify precisely the images of the hand-written digit 7.

To begin with, we consider linear functions. More specifically, we consider $\Theta=\mathbb{R}^V$ and $f:\Theta\to\mathbb{R}^X$ such that

$$\forall \theta \in \Theta \ \forall \hat{x} \in X \colon \quad f_{\theta}(\hat{x}) = \langle \theta, \hat{x} \rangle = \sum_{v \in V} \theta_{v} \, \hat{x}_{v} \tag{1}$$

Example.



We introduce a probabilistic model:

- ▶ For any sample $s \in S$, let X_s be a random variable whose value is a vector $x_s \in \mathbb{R}^V$, the **feature vector** of s
- ▶ For any sample $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0,1\}$, the **label** of s
- For any $v \in V$, let Θ_v be a random variable whose value is a real number $\theta_v \in \mathbb{R}$, a parameter of the linear function we seek to learn

We assume that the joint probability factorizes according to:

$$P(X, Y, \Theta) = \prod_{s \in S} (P(Y_s \mid X_s, \Theta)P(X_s)) \prod_{v \in V} P(\Theta_v)$$
 (2)

We attempt to learn parameters by maximizing the conditional probability

$$P(\Theta \mid X, Y) = \frac{P(X, Y, \Theta)}{P(X, Y)}$$

$$= \frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)}$$

$$\propto P(Y \mid X, \Theta) P(\Theta)$$

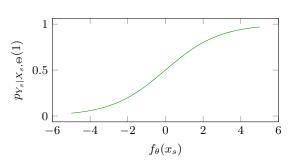
$$= \prod_{s \in S} P(Y_s \mid X_s, \Theta) \prod_{v \in V} P(\Theta_v) .$$

We attempt to infer labels by maximizing the conditional probability

$$P(Y \mid X, \Theta) = \prod_{s \in S} P(Y_s \mid X_s, \Theta) .$$

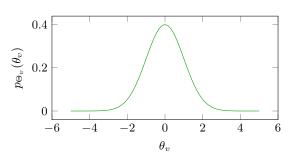
► Sigmoid distribution

$$\forall s \in S: \qquad p_{Y_s|X_s,\Theta}(1) = \frac{1}{1 + 2^{-f_{\theta}(x_s)}}$$
 (3)



▶ Normal distribution with $\sigma \in \mathbb{R}^+$:

$$\forall v \in V: \qquad p_{\Theta_v}(\theta_v) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\theta_v^2/2\sigma^2} \tag{3}$$



Lemma. Estimating maximally probable parameters θ , given attributes x and labels y, i.e.,

$$\underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad p_{\Theta|X,Y}(\theta, x, y)$$

is equivalent to the optimization problem

$$\min_{\theta \in \Theta} \quad \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s) \tag{4}$$

with L, R and λ such that

$$\forall r \in \mathbb{R} \ \forall \hat{y} \in \{0, 1\} \colon \quad L(r, \hat{y}) = -\hat{y}r + \log(1 + 2^r) \tag{5}$$

$$\forall \theta \in \Theta \colon \qquad R(\theta) = \|\theta\|_2^2 \tag{6}$$

$$\lambda = \frac{\log e}{2\sigma^2} \ . \tag{7}$$

It is called the l_2 -regularized **logistic regression problem** with respect to $x,\ y$ and $\sigma.$

Proof. Firstly,

$$\underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad p_{\Theta|X,Y}(\theta, x, y)$$

$$= \underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad \prod_{s \in S} p_{Y_s|X_s,\Theta}(y_s, x_s, \theta) \prod_{v \in V} p_{\Theta_v}(\theta_v)$$

$$= \underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad \sum_{s \in S} \log p_{Y_s|X_s,\Theta}(y_s, x_s, \theta) + \sum_{v \in V} \log p_{\Theta_v}(\theta_v)$$
(8)

Secondly,

$$\log p_{Y_s|X_s,\Theta}(y_s, x_s, \theta)$$

$$= y_s \log p_{Y_s|X_s,\Theta}(1, x_s, \theta) + (1 - y_s) \log p_{Y_s|X_s,\Theta}(0, x_s, \theta)$$

$$= y_s \log \frac{p_{Y_s|X_s,\Theta}(1, x_s, \theta)}{p_{Y_s|X_s,\Theta}(0, x_s, \theta)} + \log p_{Y_s|X_s,\Theta}(0, x_s, \theta)$$
(9)

Thus, with (3) and (4):

$$\underset{\theta \in \mathbb{R}^m}{\operatorname{argmin}} \quad \sum_{s \in S} \left(-y_s \langle \theta, x_s \rangle + \log \left(1 + 2^{\langle \theta, x_s \rangle} \right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|_2^2$$
 (10)

Lemma. The objective function

$$\varphi(\theta) = \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
 (11)

of the $\it{l}_{\rm{2}}\text{-regularized}$ logistic regression problem is convex.

The l_2 -regularized logistic regression problem can be solved, e.g., by the steepest descent algorithm with a tolerance parameter $\epsilon \in \mathbb{R}^+_0$:

Algorithm. Steepest descent with line search

```
\begin{array}{l} \theta := 0 \\ \text{repeat} \\ d := \nabla \varphi(\theta) \\ \eta := \mathop{\mathrm{argmin}}_{\eta' \in \mathbb{R}} \varphi(\theta - \eta' d) \quad \text{(line search)} \\ \theta := \theta - \eta d \\ \text{if } \|d\| < \epsilon \\ \text{return } \theta \end{array}
```

Lemma: Estimating maximally probable labels y, given attributes x^\prime and parameters θ , i.e.,

$$\underset{y \in \{0,1\}^S}{\operatorname{argmax}} \quad p_{Y|X,\Theta}(y, x', \theta) \tag{12}$$

is equivalent to the inference problem

$$\min_{y' \in \{0,1\}^S} \sum_{s \in S} L(f_{\theta}(x_s), y'_s) . \tag{13}$$

It has the solution

$$\forall s \in S' : \quad y_s = \begin{cases} 1 & \text{if } f_{\theta}(x_s') > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (14)

Proof. Firstly,

$$\begin{array}{ll} \underset{y \in \{0,1\}^{S'}}{\operatorname{argmax}} & p_{Y|X,\Theta}(y,x',\theta) \\ = \underset{y \in \{0,1\}^{S'}}{\operatorname{argmax}} & \prod_{s \in S'} p_{Y_s|X_s,\Theta}(y_s,x_s',\theta) \\ = \underset{y \in \{0,1\}^{S'}}{\operatorname{argmax}} & \sum_{s \in S'} \log p_{Y_s|X_s,\Theta}(y_s,x_s',\theta) \\ = \underset{y \in \{0,1\}^{S'}}{\operatorname{argmax}} & \sum_{s \in S'} \left(y_s \log \frac{p_{Y_s|X_s,\Theta}(1,x_s',\theta)}{p_{Y_s|X_s,\Theta}(0,x_s',\theta)} + \log p_{Y_s|X_s,\Theta}(0,x_s',\theta)\right) \\ = \underset{y \in \{0,1\}^{S'}}{\operatorname{argmin}} & \sum_{s \in S'} \left(-y_s f_{\theta}(x_s') + \log \left(1 + 2^{f_{\theta}(x_s')}\right)\right) \\ = \underset{y \in \{0,1\}^{S'}}{\operatorname{argmin}} & \sum_{s \in S'} L(f_{\theta}(x_s'),y_s) \ . \end{array}$$

Secondly,

$$\min_{y \in \{0,1\}^{S'}} \sum_{s \in S'} \left(-y_s f_{\theta}(x'_s) + \log\left(1 + 2^{f_{\theta}(x'_s)}\right) \right) = \sum_{s \in S'} \max_{y_s \in \{0,1\}} y_s f_{\theta}(x'_s) .$$

Notation. Let G = (V, E) a digraph.

ightharpoonup For any $v \in V$, let

$$P_v = \{u \in V \mid (u, v) \in E\}$$
 the set of parents of v (15)

$$C_v = \{ w \in V \mid (v, w) \in E \}$$
 the set of **children** of v . (16)

▶ For any $u,v \in V$, let $\mathcal{P}(u,v)$ denote the set of all uv-paths. (Any path is a subgraph. For any node u, the uu-path $(\{u\},\emptyset)$ exists.)

Let G be acyclic.

ightharpoonup For any $v \in V$, let

$$A_v = \{u \in V \mid \mathcal{P}(u,v) \neq \emptyset\} \setminus \{v\} \qquad \text{ the set of ancestors of } v \quad \text{(17)}$$

$$D_v = \{w \in V \mid \mathcal{P}(v, w) \neq \emptyset\} \setminus \{v\}$$
 the set of **descendants** of v . (18)

Definition. A tuple $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ is called a **compute graph**, iff the following conditions hold:

- $ightharpoonup G = (V \cup D \cup D', E)$ is an acyclic digraph
- $\blacktriangleright \ \forall v \in V : P_v = \emptyset$
- $\forall v \in D' : C_v = \emptyset$
- $\blacktriangleright \ \forall v \in D : P_v \neq \emptyset \text{ and } C_v \neq \emptyset$

Definition. For any compute graph

 $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$, any $v \in V \cup D \cup D'$ and any $\theta \in \Theta$, let $\alpha_{v\theta} \colon \mathbb{R}^V \to \mathbb{R}$ such that for all $\hat{x} \in \mathbb{R}^V$:

$$\alpha_{v\theta}(\hat{x}) = \begin{cases} \hat{x}_v & \text{if } v \in V \\ g_{v\theta}(\alpha_{P_v\theta}(\hat{x})) & \text{otherwise} \end{cases}$$
 (19)

We call $\alpha_{v\theta}(\hat{x})$ the activation of v for input \hat{x} and parameters θ . For any $\theta \in \Theta$ let $f_{\theta} : \mathbb{R}^{V} \to \mathbb{R}^{D'}$ such that $f_{\theta} = \alpha_{D'\theta}$. We call $f_{\theta}(\hat{x})$ the output of the compute graph for input \hat{x} and parameters θ .

Example. Consider the compute graph below with $V = \{v_0, v_1, v_2\}$, $D = \{v_3\}$ and $D' = \{v_4\}$.

Moreover, consider $\Theta = \{\theta_0, \theta_1\}$ and

- $\blacktriangleright \ g_{v_3\theta}\colon \mathbb{R}^{\{v_0,v_1\}}\to \mathbb{R} \text{ such that } g_{v_3\theta}(x)=x_{v_0}+\theta_0x_{v_1}$
- $\blacktriangleright \ g_{v_4\theta}\colon \mathbb{R}^{\{v_2,v_3\}}\to \mathbb{R} \text{ such that } g_{v_4\theta}(x)=x_{v_2}+x_{v_3}^{\theta_1}$

This defines the function $f_{\theta}(x) = x_{v_2} + (x_{v_0} + \theta_0 x_{v_1})^{\theta_1}$.

In the following:

- ightharpoonup We assume $\Theta = \mathbb{R}^J$ for some set J.
- ▶ We consider compute graphs with |D'|=1, i.e. $f_{\theta}(\hat{x})\in\mathbb{R}$ for every $\hat{x}\in\mathbb{R}^V.$

Problem: The l_2 -regularized non-linear logistic regression problem with respect to labeled data $T=(S,\mathbb{R}^V,x,y)$ and $\sigma\in\mathbb{R}^+$ is to solve

$$\underset{\theta \in \mathbb{R}^J}{\operatorname{argmin}} \quad \sum_{s \in S} \left(-y_s f_{\theta}(x_s) + \log\left(1 + 2^{f_{\theta}(x)}\right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|^2 \quad . \tag{20}$$

Remark.

- ▶ (20) is a generalization of linear logistic regression.
- ▶ (20) can be non-convex for f_{θ} non-linear in θ .
- \blacktriangleright A local minimum $\hat{\theta} \in \mathbb{R}^J$ can be found by means of a steepest descent algorithm.
- ▶ In order to compute $\nabla_{\theta} f_{\theta}$, we describe the **backward propagation** algorithm.

Lemma. Let $j \in J$. For any $v \in V$: $\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = 0$. For any $v \in (D \cup D') \setminus V$:

$$\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = \sum_{u \in (A_v \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_j} \Delta_{uv}$$
 (21)

with

$$\Delta_{uv} := \sum_{(V', E') \in \mathcal{P}(u, v)} \prod_{(u', v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}} . \tag{22}$$

Remark. For any node u: $\Delta_{uu}=1$. For any u,v with $\mathcal{P}(u,v)=\emptyset$: $\Delta_{uv}=0$. Proof (idea).

$$\frac{\partial \alpha_{v\theta}}{\partial \theta_{j}} = \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial \alpha_{u\theta}}{\partial \theta_{j}}
= \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \sum_{u' \in P_{u}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \alpha_{u'\theta}} \frac{\partial \alpha_{u'\theta}}{\partial \theta_{j}}
= \text{repeated application (23)}$$

$$= \sum_{v \in (A \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_{j}} \sum_{(V' \in F') \in \mathcal{P}(u,v) \setminus \{v',v'\} \in F'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

Lemma (backward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$\Delta_{uw} = \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \, \Delta_{vw} \tag{24}$$

Proof.

$$\Delta_{uw} = \sum_{(V',E')\in\mathcal{P}(u,w)} \prod_{(u',v')\in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \sum_{(V'',E'')\in\mathcal{P}(v,w)} \prod_{(u',v')\in E''\cup\{(u,v)\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \sum_{(V'',E'')\in\mathcal{P}(v,w)} \prod_{(u',v')\in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}$$

$$= \sum_{v\in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}$$

19/26

The backward propagation algorithm computes Δ_{uw} for one node w and all nodes u. It is defined wrt. an arbitrary partial order $<_C$ of the nodes such that

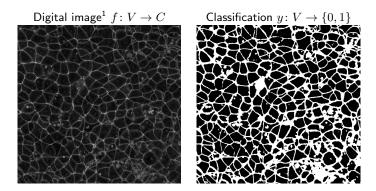
$$\forall u \in V \cup D \quad \forall v \in C_u : \quad v <_C u . \tag{25}$$

Compute graph $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ Node $w \in V \cup D \cup D'$ for u ordered by $<_C$ (25) if u = w $\Delta_{uw} := 1$ else if $\mathcal{P}(u, w) = \emptyset$ $\Delta_{uw} := 0$ else

 $\Delta_{uw} := \sum_{v \in C_{s}} \frac{\partial g_{v\theta}}{\partial \alpha} \Delta_{vw}$

Input:

(24)



¹By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.

Definition. Let G=(V,E) a pixel grid graph and $g\colon V\to C$ a digital image. Let $m\in\mathbb{N}$ and $X=\mathbb{R}^m$ (a **feature space**). For any pixel $v\in V$, let $x_v^{(g)}\in X$ (a **feature vector** associated with the pixel v of the digital image g). Let $f\colon X\to\mathbb{R}$ (e.g. a linear function learned by logistic regression).

The instance of the trivial pixel classification problem has the form

$$\min_{y \in \{0,1\}^V} \quad \sum_{v \in V} (-f(x_v)) \, y_v \tag{26}$$

With the pixel grid graph (V,E) and $c'\colon E\to\mathbb{R}^+_0$, the instance of the **smooth** pixel classification problem has the form

$$\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} (-f(x_v)) \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|}_{\varphi(y)} \tag{27}$$

Remark. Motivation: Prior knowledge that decisions at neighboring pixels v, w are more likely to be equal $(y_v = v_w)$ than unequal $(y_v \neq y_w)$.

A naïve algorithm for the smooth pixel classification problem is **local search** with a transformation $T_v\colon\{0,1\}^V\to\{0,1\}^V$ that changes the decision for a single pixel, i.e., for any $y\colon V\to\{0,1\}$ and any $v,w\in V$:

$$T_v(y)(w) = \begin{cases} 1 - y_w & \text{if } w = v \\ y_w & \text{otherwise} \end{cases}$$
.

Algorithm.

```
Initially, y\colon V\to \{0,1\} and W=V while W\neq\emptyset W':=\emptyset for each v\in W if \varphi(T_v(y))-\varphi(y)<0 y:=T_v(y) W':=W'\cup\{w\in V\,|\,\{v,w\}\in E\} W:=W'
```

Remark.

- ▶ On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- ► On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- ► Next, we will reduce the smooth pixel classification problem with two classes to the well-known **minimum** *st*-**cut problem** that can be solved exactly and efficiently.

Definition. A 5-tuple $N=(V,E,s,t,\gamma)$ is called a **network** iff (V,E) is a directed graph and $s\in V$ and $t\in V$ and $s\neq t$ and $\gamma:E\to\mathbb{R}_0^+$. The nodes s and t are called the **source** and the **sink** of N, respectively. For any edge $e\in E$, γ_e is called the **capacity** of e in N.

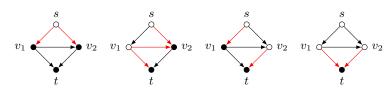
Definition. The instance of the **minimum** st-cut problem wrt. a network $N=(V,E,s,t,\gamma)$ has the form

$$\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} \gamma_{vw} (1 - x_v) x_w \tag{28}$$

subject to
$$x_s = 0$$
 (29)

$$x_t = 1 \tag{30}$$

Example.



Lemma. The smooth pixel classification problem is reducible to the minimum st-cut problem.

Proof (sketch). For any instance of the smooth pixel classification problem,

$$\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, \left(y_v (1 - y_w) + (1 - y_v) y_w \right)}_{\varphi(y)} \,, \qquad (31)$$

define the instance of the induced minimum st-cut problem in terms of the network (V',E',s,t,γ) such that

$$V' = V \cup \{s, t\}$$

$$E' = \{(s, v) \in V'^{2} \mid c_{v} > 0\} \cup \{(v, t) \in V'^{2} \mid c_{v} < 0\}$$

$$\cup \{(v, w) \in V'^{2} \mid \{v, w\} \in E\}$$
(32)

and $\gamma \colon E' \to \mathbb{R}_0^+$ such that

$$\forall (s,v) \in E' : \quad \gamma_{(s,v)} = c_v \tag{34}$$

$$\forall (v,t) \in E' \colon \quad \gamma_{(v,t)} = -c_v \tag{35}$$

$$\forall \{v, w\} \in E: \quad \gamma_{(v,w)} = \gamma_{(w,v)} = c'_{\{v,w\}} .$$
 (36)