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Classification of digital images

Problem. Given a finite set V of pixels, the set X = RV of images, a finite
image collection x : S → X and binary decisions y : S → {0, 1}, find a
function g : X → {0, 1} to make such a decision for any image x ∈ X.

Example. Learning to identify precisely the images of the hand-written digit 7.
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Logistic regression

To begin with, we consider linear functions. More specifically, we consider
Θ = RV and f : Θ → RX such that

∀θ ∈ Θ ∀x̂ ∈ X : fθ(x̂) = ⟨θ, x̂⟩ =
∑
v∈V

θv x̂v (1)

Example.
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Logistic regression

We introduce a probabilistic model:

▶ For any sample s ∈ S, let Xs be a random variable whose value is a vector
xs ∈ RV , the feature vector of s

▶ For any sample s ∈ S, let Ys be a random variable whose value is a binary
number ys ∈ {0, 1}, the label of s

▶ For any v ∈ V , let Θv be a random variable whose value is a real number
θv ∈ R, a parameter of the linear function we seek to learn

We assume that the joint probability factorizes according to:

P (X,Y,Θ) =
∏
s∈S

(P (Ys | Xs,Θ)P (Xs))
∏
v∈V

P (Θv) (2)
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Logistic regression

We attempt to learn parameters by maximizing the conditional probability

P (Θ | X,Y ) =
P (X,Y,Θ)

P (X,Y )

=
P (Y | X,Θ)P (X)P (Θ)

P (X,Y )

∝ P (Y | X,Θ)P (Θ)

=
∏
s∈S

P (Ys | Xs,Θ)
∏
v∈V

P (Θv) .

We attempt to infer labels by maximizing the conditional probability

P (Y | X,Θ) =
∏
s∈S

P (Ys | Xs,Θ) .
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Logistic regression

▶ Sigmoid distribution

∀s ∈ S : pYs|Xs,Θ(1) =
1

1 + 2−fθ(xs)
(3)
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Logistic regression

▶ Normal distribution with σ ∈ R+:

∀v ∈ V : pΘv (θv) =
1

σ
√
2π

e−θ2v/2σ
2

(3)
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Logistic regression

Lemma. Estimating maximally probable parameters θ, given attributes x and
labels y, i.e.,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

is equivalent to the optimization problem

min
θ∈Θ

λR(θ) +
∑
s∈S

L(fθ(xs), ys) (4)

with L, R and λ such that

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) = −ŷr + log (1 + 2r) (5)

∀θ ∈ Θ: R(θ) = ∥θ∥22 (6)

λ =
log e

2σ2
. (7)

It is called the l2-regularized logistic regression problem with respect to x, y
and σ.
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Logistic regression

Proof. Firstly,

argmax
θ∈Rm

pΘ|X,Y (θ, x, y)

= argmax
θ∈Rm

∏
s∈S

pYs|Xs,Θ(ys, xs, θ)
∏
v∈V

pΘv (θv)

= argmax
θ∈Rm

∑
s∈S

log pYs|Xs,Θ(ys, xs, θ) +
∑
v∈V

log pΘv (θv) (8)

Secondly,

log pYs|Xs,Θ(ys, xs, θ)

= ys log pYs|Xs,Θ(1, xs, θ) + (1− ys) log pYs|Xs,Θ(0, xs, θ)

= ys log
pYs|Xs,Θ(1, xs, θ)

pYs|Xs,Θ(0, xs, θ)
+ log pYs|Xs,Θ(0, xs, θ) (9)

Thus, with (3) and (4):

argmin
θ∈Rm

∑
s∈S

(
−ys⟨θ, xs⟩+ log

(
1 + 2⟨θ,xs⟩

))
+

log e

2σ2
∥θ∥22 (10)
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Logistic regression

Lemma. The objective function

φ(θ) = λR(θ) +
∑
s∈S

L(fθ(xs), ys) (11)

of the l2-regularized logistic regression problem is convex.
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Logistic regression

The l2-regularized logistic regression problem can be solved, e.g., by the
steepest descent algorithm with a tolerance parameter ϵ ∈ R+

0 :

Algorithm. Steepest descent with line search

θ := 0
repeat

d := ∇φ(θ)
η := argminη′∈R φ(θ − η′d) (line search)
θ := θ − ηd
if ∥d∥ < ϵ

return θ



11/26

Logistic regression

Lemma: Estimating maximally probable labels y, given attributes x′ and
parameters θ, i.e.,

argmax
y∈{0,1}S

pY |X,Θ(y, x
′, θ) (12)

is equivalent to the inference problem

min
y′∈{0,1}S

∑
s∈S

L(fθ(xs), y
′
s) . (13)

It has the solution

∀s ∈ S′ : ys =

{
1 if fθ(x

′
s) > 0

0 otherwise
. (14)
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Logistic regression

Proof. Firstly,

argmax
y∈{0,1}S′

pY |X,Θ(y, x
′, θ)

= argmax
y∈{0,1}S′

∏
s∈S′

pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

log pYs|Xs,Θ(ys, x
′
s, θ)

= argmax
y∈{0,1}S′

∑
s∈S′

(
ys log

pYs|Xs,Θ(1, x
′
s, θ)

pYs|Xs,Θ(0, x
′
s, θ)

+ log pYs|Xs,Θ(0, x
′
s, θ)

)
= argmin

y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

= argmin
y∈{0,1}S′

∑
s∈S′

L(fθ(x
′
s), ys) .

Secondly,

min
y∈{0,1}S′

∑
s∈S′

(
−ysfθ(x

′
s) + log

(
1 + 2fθ(x

′
s)
))

=
∑
s∈S′

max
ys∈{0,1}

ysfθ(x
′
s) .
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Deep Learning

Notation. Let G = (V,E) a digraph.

▶ For any v ∈ V , let

Pv = {u ∈ V | (u, v) ∈ E} the set of parents of v (15)

Cv = {w ∈ V | (v, w) ∈ E} the set of children of v . (16)

▶ For any u, v ∈ V , let P(u, v) denote the set of all uv-paths. (Any path is
a subgraph. For any node u, the uu-path ({u}, ∅) exists.)

Let G be acyclic.

▶ For any v ∈ V , let

Av = {u ∈ V | P(u, v) ̸= ∅} \ {v} the set of ancestors of v (17)

Dv = {w ∈ V | P(v, w) ̸= ∅} \ {v} the set of descendants of v . (18)
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Deep Learning

Definition. A tuple (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ) is called
a compute graph, iff the following conditions hold:

▶ G = (V ∪D ∪D′, E) is an acyclic digraph

▶ ∀v ∈ V : Pv = ∅
▶ ∀v ∈ D′ : Cv = ∅
▶ ∀v ∈ D : Pv ̸= ∅ and Cv ̸= ∅

Definition. For any compute graph
(V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ), any v ∈ V ∪D ∪D′ and
any θ ∈ Θ, let αvθ : RV → R such that for all x̂ ∈ RV :

αvθ(x̂) =

{
x̂v if v ∈ V

gvθ(αPvθ(x̂)) otherwise
. (19)

We call αvθ(x̂) the activation of v for input x̂ and parameters θ. For any

θ ∈ Θ let fθ : RV → RD′
such that fθ = αD′θ. We call fθ(x̂) the output of

the compute graph for input x̂ and parameters θ.
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Deep Learning

Example. Consider the compute graph below with V = {v0, v1, v2},
D = {v3} and D′ = {v4}.

v0

v1

v2

v3

v4

Moreover, consider Θ = {θ0, θ1} and

▶ gv3θ : R
{v0,v1} → R such that gv3θ(x) = xv0 + θ0xv1

▶ gv4θ : R
{v2,v3} → R such that gv4θ(x) = xv2 + xθ1

v3

This defines the function fθ(x) = xv2 + (xv0 + θ0xv1)
θ1 .
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Deep Learning

In the following:

▶ We assume Θ = RJ for some set J .

▶ We consider compute graphs with |D′| = 1, i.e. fθ(x̂) ∈ R for every
x̂ ∈ RV .
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Deep Learning

Problem: The l2-regularized non-linear logistic regression problem with
respect to labeled data T = (S,RV , x, y) and σ ∈ R+ is to solve

argmin
θ∈RJ

∑
s∈S

(
−ysfθ(xs) + log

(
1 + 2fθ(x)

))
+

log e

2σ2
∥θ∥2 . (20)

Remark.

▶ (20) is a generalization of linear logistic regression.

▶ (20) can be non-convex for fθ non-linear in θ.

▶ A local minimum θ̂ ∈ RJ can be found by means of a steepest descent
algorithm.

▶ In order to compute ∇θfθ, we describe the backward propagation
algorithm.
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Deep Learning

Lemma. Let j ∈ J . For any v ∈ V : ∂αvθ
∂θj

= 0. For any v ∈ (D ∪D′) \ V :

∂αvθ

∂θj
=

∑
u∈(Av∪{v})\V

∂guθ
∂θj

∆uv (21)

with

∆uv :=
∑

(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
. (22)

Remark. For any node u: ∆uu = 1. For any u, v with P(u, v) = ∅: ∆uv = 0.

Proof (idea).

∂αvθ

∂θj
=

∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂αuθ

∂θj
(23)

=
∂gvθ
∂θj

+
∑
u∈Pv

∂gvθ
∂αuθ

∂guθ
∂θj

+
∑
u∈Pv

∑
u′∈Pu

∂gvθ
∂αuθ

∂guθ
∂αu′θ

∂αu′θ

∂θj

= repeated application (23)

=
∑

u∈(Av∪{v})\V

∂guθ
∂θj

∑
(V ′,E′)∈P(u,v)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ
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Deep Learning

Lemma (backward propagation). For all nodes u ̸= w such that P(u,w) ̸= ∅:

∆uw =
∑
v∈Cu

∂gvθ
∂αuθ

∆vw (24)

Proof.

∆uw =
∑

(V ′,E′)∈P(u,w)

∏
(u′,v′)∈E′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′∪{(u,v)}

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∑
(V ′′,E′′)∈P(v,w)

∏
(u′,v′)∈E′′

∂gv′θ

∂αu′θ

=
∑
v∈Cu

∂gvθ
∂αuθ

∆vw
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Deep Learning

The backward propagation algorithm computes ∆uw for one node w and all
nodes u. It is defined wrt. an arbitrary partial order <C of the nodes such that

∀u ∈ V ∪D ∀v ∈ Cu : v <C u . (25)

Input:
Compute graph (V,D,D′, E,Θ, {gvθ : RPv → R}v∈(D∪D′)\V,θ∈Θ)
Node w ∈ V ∪D ∪D′

for u ordered by <C (25)
if u = w

∆uw := 1
else if P(u,w) = ∅

∆uw := 0
else

∆uw :=
∑

v∈Cu

∂gvθ
∂αuθ

∆vw (24)
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Pixel classification

Digital image1 f : V → C Classification y : V → {0, 1}

1By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.
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Pixel classification

Definition. Let G = (V,E) a pixel grid graph and g : V → C a digital image.

Let m ∈ N and X = Rm (a feature space). For any pixel v ∈ V , let x
(g)
v ∈ X

(a feature vector associated with the pixel v of the digital image g). Let
f : X → R (e.g. a linear function learned by logistic regression).

The instance of the trivial pixel classification problem has the form

min
y∈{0,1}V

∑
v∈V

(−f(xv)) yv (26)

With the pixel grid graph (V,E) and c′ : E → R+
0 , the instance of the smooth

pixel classification problem has the form

min
y∈{0,1}V

∑
v∈V

(−f(xv)) yv +
∑

{v,w}∈E

c′{v,w} |yv − yw|︸ ︷︷ ︸
φ(y)

(27)

Remark. Motivation: Prior knowledge that decisions at neighboring pixels v, w
are more likely to be equal (yv = vw) than unequal (yv ̸= yw).
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Pixel classification

A näıve algorithm for the smooth pixel classification problem is local search
with a transformation Tv : {0, 1}V → {0, 1}V that changes the decision for a
single pixel, i.e., for any y : V → {0, 1} and any v, w ∈ V :

Tv(y)(w) =

{
1− yw if w = v

yw otherwise
.

Algorithm.
Initially, y : V → {0, 1} and W = V
while W ̸= ∅

W ′ := ∅
for each v ∈ W

if φ(Tv(y))− φ(y) < 0
y := Tv(y)
W ′ := W ′ ∪ {w ∈ V | {v, w} ∈ E}

W := W ′
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Pixel classification

Remark.

▶ On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two classes.

▶ On the other hand, it does not necessarily solve smooth pixel classification
with two classes to optimality.

▶ Next, we will reduce the smooth pixel classification problem with two
classes to the well-known minimum st-cut problem that can be solved
exactly and efficiently.
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Pixel classification

Definition. A 5-tuple N = (V,E, s, t, γ) is called a network iff (V,E) is a
directed graph and s ∈ V and t ∈ V and s ̸= t and γ : E → R+

0 . The nodes s
and t are called the source and the sink of N , respectively. For any edge
e ∈ E, γe is called the capacity of e in N .

Definition. The instance of the minimum st-cut problem wrt. a network
N = (V,E, s, t, γ) has the form

min
x∈{0,1}V

∑
vw∈E

γvw (1− xv)xw (28)

subject to xs = 0 (29)

xt = 1 (30)

Example.
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Pixel classification

Lemma. The smooth pixel classification problem is reducible to the minimum
st-cut problem.

Proof (sketch). For any instance of the smooth pixel classification problem,

min
y∈{0,1}V

∑
v∈V

cv yv +
∑

{v,w}∈E

c′{v,w} (yv(1− yw) + (1− yv)yw)︸ ︷︷ ︸
φ(y)

, (31)

define the instance of the induced minimum st-cut problem in terms of the
network (V ′, E′, s, t, γ) such that

V ′ = V ∪ {s, t} (32)

E′ = {(s, v) ∈ V ′2 | cv > 0} ∪ {(v, t) ∈ V ′2 | cv < 0}

∪ {(v, w) ∈ V ′2 | {v, w} ∈ E} (33)

and γ : E′ → R+
0 such that

∀(s, v) ∈ E′ : γ(s,v) = cv (34)

∀(v, t) ∈ E′ : γ(v,t) = −cv (35)

∀{v, w} ∈ E : γ(v,w) = γ(w,v) = c′{v,w} . (36)


