Machine Learning I

Jannik Irmai, David Stein, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/ml1/

Winter Term 2024/2025

Contents. This part of the course is about a special case of supervised learning: the supervised learning of composite functions, aka. supervised deep learning.

- ▶ We define a family of (composite) functions in terms a compute graph.
- \triangleright We describe two algorithms for computing partial derivatives (if these exist) of such functions, forward propagation and backward propagation.
- \blacktriangleright In the exercises, we compare these algorithms.

Notation. Let $G = (V, E)$ a digraph.

▶ For any $v \in V$, let

 $P_v = \{u \in V \mid (u, v) \in E\}$ the set of parents of v (1) $C_v = \{w \in V \mid (v, w) \in E\}$ the set of children of v. (2)

▶ For any $u, v \in V$, let $\mathcal{P}(u, v)$ denote the set of all uv -paths of G. (Any path is a subgraph. For any node u, the uu -path $({u}, \emptyset)$ exists.)

Let G be acyclic.

$$
\blacktriangleright
$$
 For any $v \in V$, let

 $A_v = \{u \in V \mid \mathcal{P}(u, v) \neq \emptyset\} \setminus \{v\}$ the set of ancestors of v (3) $D_v = \{w \in V \mid \mathcal{P}(v, w) \neq \emptyset\} \setminus \{v\}$ the set of descendants of v. (4)

 $\textsf{Definition.}~\textsf{A}~\textsf{tuple}~(V,D,D',E,\Theta,\{g_{v\theta}\colon\mathbb{R}^{P_v}\to\mathbb{R}\}_{v\in(D\cup D')\setminus V,\theta\in\Theta})~\textsf{is called}$ a compute graph, iff the following conditions hold:

- ► $G = (V \cup D \cup D', E)$ is an acyclic digraph.
- ▶ For any $v \in V$, called an input node, $P_v = \emptyset$.
- ▶ For any $v \in D'$, called an **output node**, $C_v = \emptyset$.
- ▶ For any $v \in D$, called a **hidden node**, $P_v \neq \emptyset$ and $C_v \neq \emptyset$.

Definition. For any compute graph $(V,D,D',E,\Theta,\{g_{v\theta}\colon\mathbb{R}^{P_v}\to\mathbb{R}\}_{v\in(D\cup D')\setminus V,\theta\in\Theta})$, any $v\in V\cup D\cup D'$ and any $\theta \in \Theta$, let $\alpha_{v\theta} \colon \mathbb{R}^V \to \mathbb{R}$ such that for all $\hat{x} \in \mathbb{R}^V$:

$$
\alpha_{v\theta}(\hat{x}) = \begin{cases} \hat{x}_v & \text{if } v \in V \\ g_{v\theta}(\alpha_{P_v\theta}(\hat{x})) & \text{otherwise} \end{cases} . \tag{5}
$$

For any $\theta \in \Theta$ let $f_\theta \colon \mathbb{R}^V \to \mathbb{R}^{D'}$ such that $f_\theta = \alpha_{D'\theta}.$ We call $\alpha_{v\theta}(\hat{x})$ the activation of v for input \hat{x} and parameters θ . We call $f_{\theta}(\hat{x})$ the **output** of the compute graph for input \hat{x} and parameters θ .

Example. Consider $V = \{v_0, v_1, v_2\}$, $D = \{v_3\}$, $D' = \{v_4\}$ and the edge set E of the digraph depicted below.

Consider, in addition, $\Theta = \{\theta_0, \theta_1\}$ and

$$
g_{v_3\theta}\colon \mathbb{R}^{\{v_0, v_1\}} \to \mathbb{R}\colon x \mapsto x_{v_0} + \theta_0 x_{v_1} \tag{6}
$$

$$
g_{v_4\theta}
$$
: $\mathbb{R}^{\{v_2, v_3\}} \to \mathbb{R}$: $x \mapsto x_{v_2} + x_{v_3}^{\theta_1}$. (7)

The compute graph $(V,D,D',E,\Theta,\{g_{v_3\theta},g_{v_4\theta}\})$ defines the function

$$
f_{\theta}
$$
: $\mathbb{R}^{V} \to \mathbb{R}^{D'}$: $x \mapsto x_{v_2} + (x_{v_0} + \theta_0 x_{v_1})^{\theta_1}$. (8)

 $\textsf{Definition. Let}\ (V,D,D',E,\Theta,\{g_{v\theta}\colon\mathbb{R}^{P_v}\to\mathbb{R}\}_{v\in(D\cup D')\setminus V,\theta\in\Theta})$ a compute graph with $|D'|=1$ and $\Theta=\mathbb{R}^J$ for some finite set $J\neq\emptyset.$ Let f be the family of functions defined by this compute graph. The l_2 -regularized logistic $\mathsf{regression}$ problem wrt. f , labeled data $T = (S, \mathbb{R}^V, x, y)$ and $\sigma \in \mathbb{R}^+$ has the form

$$
\min_{\theta \in \mathbb{R}^J} \quad \frac{1}{|S|} \sum_{s \in S} \left(-y_s f_{\theta}(x_s) + \log \left(1 + 2^{f_{\theta}(x)} \right) \right) + \frac{\log e}{2\sigma^2} ||\theta||^2 \quad . \tag{9}
$$

Remark.

- \blacktriangleright [\(9\)](#page-5-0) generalizes l_2 -regularized linear logistic regression
- \blacktriangleright [\(9\)](#page-5-0) can be non-convex in case f is not linear in θ .
- ▶ If the partial derivative of f wrt. θ_i exists for all $i \in J$, we can search for a local minimum using a steepest descent algorithm.
- ▶ To do so, we describe two techniques for computing $\nabla_{\theta} f$, forward propagation and backward propagation.

Lemma. Let $j \in J$. For any $v \in V$: $\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = 0$. For any $v \in (D \cup D') \setminus V$:

$$
\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = \sum_{u \in (A_v \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_j} \Delta_{uv}
$$
(10)

with

$$
\Delta_{uv} := \sum_{(V',E') \in \mathcal{P}(u,v)} \prod_{(u',v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}} \quad . \tag{11}
$$

Remark. For any node u: $\Delta_{uu} = 1$. For any u, v with $\mathcal{P}(u, v) = \emptyset$: $\Delta_{uv} = 0$. Proof (idea).

$$
\frac{\partial \alpha_{v\theta}}{\partial \theta_{j}} = \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial \alpha_{u\theta}}{\partial \theta_{j}} \qquad (12)
$$
\n
$$
= \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \sum_{u' \in P_{u}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \alpha_{u'\theta}} \frac{\partial \alpha_{u'\theta}}{\partial \theta_{j}}
$$
\n= repeated application (12)\n
$$
= \sum_{u \in (A_{v} \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_{j}} \sum_{(V', E') \in \mathcal{P}(u, v)} \prod_{(u', v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$

Lemma (forward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$
\Delta_{uw} = \sum_{v \in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}} \Delta_{uv}
$$
\n(13)

Proof.

$$
\Delta_{uw} = \sum_{(V',E') \in \mathcal{P}(u,w)} \prod_{(u',v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$

\n
$$
= \sum_{v \in P_w} \sum_{(V'',E'') \in \mathcal{P}(u,v)} \prod_{(u',v') \in E'' \cup \{v,w\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$

\n
$$
= \sum_{v \in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_v \theta} \sum_{(V'',E'') \in \mathcal{P}(u,v)} \prod_{(u',v') \in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$

\n
$$
= \sum_{v \in P_w} \frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}} \Delta_{uv}
$$

П

The **forward propagation algorithm** computes Δ_{uw} for one node u and all nodes w. It is defined wrt. an arbitrary partial order \lt_P of the nodes such that

$$
\forall w \in D \cup D' \quad \forall w' \in P_w: \quad w' <_{P} w \ . \tag{14}
$$

Input:

Compute graph $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ Node $u \in V \cup D \cup D'$

for w ordered by \leq_P [\(14\)](#page-8-0) if $w = u$ $\Delta_{uw} := 1$ else if $\mathcal{P}(u, w) = \emptyset$ $\Delta_{uw} := 0$ else $\Delta_{uw}:=\sum_{v\in P_w}\frac{\partial g_{w\theta}}{\partial \alpha_{v\theta}}$ Δ_{uv} [\(13\)](#page-7-0)

Lemma (backward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$
\Delta_{uw} = \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}
$$
\n(15)

Proof.

$$
\Delta_{uw} = \sum_{(V',E') \in \mathcal{P}(u,w)} \prod_{(u',v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \sum_{(V'',E'') \in \mathcal{P}(v,w)} \prod_{(u',v') \in E'' \cup \{(u,v)\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \sum_{(V'',E'') \in \mathcal{P}(v,w)} \prod_{(u',v') \in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}
$$

П

The backward propagation algorithm computes Δ_{uw} for one node w and all nodes u. It is defined wrt. an arbitrary partial order \lt_C of the nodes such that

$$
\forall u \in V \cup D \quad \forall v \in C_u: \quad v <_C u \tag{16}
$$

Input:

Compute graph $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ Node $w \in V \cup D \cup D'$

for u ordered by \leq_C [\(16\)](#page-10-0) if $u = w$ $\Delta_{uw} := 1$ else if $\mathcal{P}(u, w) = \emptyset$ $\Delta_{uw} := 0$ else $\Delta_{uw} := \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \, \Delta_{vw}$ [\(15\)](#page-9-0)