Computer Vision I

Jannik Irmai, Jannik Presberger, Bjoern Andres

Machine Learning for Computer Vision TU Dresden

https://mlcv.cs.tu-dresden.de/courses/24-winter/cv1/

Winter Term 2024/2025

Classification of digital images

Problem. Given a finite set V of pixels, the set $X=\mathbb{R}^V$ of images, a finite image collection $x : S \to X$ and binary decisions $y : S \to \{0, 1\}$, find a function $q: X \to \{0, 1\}$ to make such a decision for any image $x \in X$.

Example. Learning to identify precisely the images of the hand-written digit 7.

To begin with, we consider linear functions. More specifically, we consider $\Theta = \mathbb{R}^V$ and $f: \Theta \rightarrow \mathbb{R}^X$ such that

$$
\forall \theta \in \Theta \,\,\forall \hat{x} \in X: \quad f_{\theta}(\hat{x}) = \langle \theta, \hat{x} \rangle = \sum_{v \in V} \theta_v \,\hat{x}_v \tag{1}
$$

Example.

We introduce a probabilistic model:

- ▶ For any sample $s \in S$, let X_s be a random variable whose value is a vector $x_s \in \mathbb{R}^V$, the feature vector of s
- ▶ For any sample $s \in S$, let Y_s be a random variable whose value is a binary number $y_s \in \{0,1\}$, the **label** of s
- ▶ For any $v \in V$, let Θ_v be a random variable whose value is a real number $\theta_v \in \mathbb{R}$, a **parameter** of the linear function we seek to learn

We assume that the joint probability factorizes according to:

$$
P(X, Y, \Theta) = \prod_{s \in S} (P(Y_s \mid X_s, \Theta) P(X_s)) \prod_{v \in V} P(\Theta_v)
$$
 (2)

We attempt to learn parameters by maximizing the conditional probability

$$
P(\Theta \mid X, Y) = \frac{P(X, Y, \Theta)}{P(X, Y)}
$$

=
$$
\frac{P(Y \mid X, \Theta) P(X) P(\Theta)}{P(X, Y)}
$$

$$
\propto P(Y \mid X, \Theta) P(\Theta)
$$

=
$$
\prod_{s \in S} P(Y_s \mid X_s, \Theta) \prod_{v \in V} P(\Theta_v) .
$$

We attempt to infer labels by maximizing the conditional probability

$$
P(Y | X, \Theta) = \prod_{s \in S} P(Y_s | X_s, \Theta) .
$$

\blacktriangleright Sigmoid distribution

$$
\forall s \in S: \qquad p_{Y_s|X_s, \Theta}(1) = \frac{1}{1 + 2^{-f_{\theta}(x_s)}} \tag{3}
$$

▶ Normal distribution with $\sigma \in \mathbb{R}^+$:

$$
\forall v \in V: \qquad p_{\Theta_v}(\theta_v) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\theta_v^2/2\sigma^2}
$$
 (3)

Lemma. Estimating maximally probable parameters θ , given attributes x and labels y , i.e.,

$$
\underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad p_{\Theta|X,Y}(\theta, x, y)
$$

is equivalent to the optimization problem

$$
\min_{\theta \in \Theta} \quad \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s) \tag{4}
$$

with L, R and λ such that

$$
\forall r \in \mathbb{R} \ \forall \hat{y} \in \{0, 1\}: \quad L(r, \hat{y}) = -\hat{y}r + \log\left(1 + 2^r\right) \tag{5}
$$

$$
\forall \theta \in \Theta \colon \qquad R(\theta) = \|\theta\|_2^2 \tag{6}
$$

$$
\lambda = \frac{\log e}{2\sigma^2} \tag{7}
$$

It is called the l_2 -regularized **logistic regression problem** with respect to x, y and σ .

Proof. Firstly,

$$
\underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad p_{\Theta|X,Y}(\theta, x, y)
$$
\n
$$
= \underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad \prod_{s \in S} p_{Y_s|X_s, \Theta}(y_s, x_s, \theta) \prod_{v \in V} p_{\Theta_v}(\theta_v)
$$
\n
$$
= \underset{\theta \in \mathbb{R}^m}{\operatorname{argmax}} \quad \sum_{s \in S} \log p_{Y_s|X_s, \Theta}(y_s, x_s, \theta) + \sum_{v \in V} \log p_{\Theta_v}(\theta_v) \tag{8}
$$

Secondly,

$$
\log p_{Y_s|X_s,\Theta}(y_s, x_s, \theta) \n= y_s \log p_{Y_s|X_s,\Theta}(1, x_s, \theta) + (1 - y_s) \log p_{Y_s|X_s,\Theta}(0, x_s, \theta) \n= y_s \log \frac{p_{Y_s|X_s,\Theta}(1, x_s, \theta)}{p_{Y_s|X_s,\Theta}(0, x_s, \theta)} + \log p_{Y_s|X_s,\Theta}(0, x_s, \theta)
$$
\n(9)

Thus, with (3) and (4) :

$$
\underset{\theta \in \mathbb{R}^m}{\text{argmin}} \quad \sum_{s \in S} \left(-y_s \langle \theta, x_s \rangle + \log \left(1 + 2^{\langle \theta, x_s \rangle} \right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|_2^2 \tag{10}
$$

Lemma. The objective function

$$
\varphi(\theta) = \lambda R(\theta) + \sum_{s \in S} L(f_{\theta}(x_s), y_s)
$$
\n(11)

of the l_2 -regularized logistic regression problem is convex.

The l_2 -regularized logistic regression problem can be solved, e.g., by the steepest descent algorithm with a tolerance parameter $\epsilon \in \mathbb{R}^+_0$:

Algorithm. Steepest descent with line search

Lemma: Estimating maximally probable labels y , given attributes x^\prime and parameters θ , i.e.,

$$
\underset{y \in \{0,1\}^S}{\text{argmax}} \quad p_{Y|X,\Theta}(y,x',\theta) \tag{12}
$$

is equivalent to the inference problem

$$
\min_{y' \in \{0,1\}^S} \sum_{s \in S} L(f_{\theta}(x_s), y'_s) . \tag{13}
$$

It has the solution

$$
\forall s \in S' : y_s = \begin{cases} 1 & \text{if } f_\theta(x_s) > 0 \\ 0 & \text{otherwise} \end{cases} . \tag{14}
$$

Proof. Firstly,

$$
\operatorname*{argmax}_{y \in \{0,1\}^{S'}} \quad p_{Y|X,\Theta}(y, x', \theta)
$$
\n
$$
= \operatorname*{argmax}_{y \in \{0,1\}^{S'}} \quad \prod_{s \in S'} p_{Y_s|X_s,\Theta}(y_s, x'_s, \theta)
$$
\n
$$
= \operatorname*{argmax}_{y \in \{0,1\}^{S'}} \quad \sum_{s \in S'} \log p_{Y_s|X_s,\Theta}(y_s, x'_s, \theta)
$$
\n
$$
= \operatorname*{argmax}_{y \in \{0,1\}^{S'}} \quad \sum_{s \in S'} \left(y_s \log \frac{p_{Y_s|X_s,\Theta}(1, x'_s, \theta)}{p_{Y_s|X_s,\Theta}(0, x'_s, \theta)} + \log p_{Y_s|X_s,\Theta}(0, x'_s, \theta) \right)
$$
\n
$$
= \operatorname*{argmin}_{y \in \{0,1\}^{S'}} \quad \sum_{s \in S'} \left(-y_s f_{\theta}(x'_s) + \log \left(1 + 2^{f_{\theta}(x'_s)}\right) \right)
$$
\n
$$
= \operatorname*{argmin}_{y \in \{0,1\}^{S'}} \quad \sum_{s \in S'} L(f_{\theta}(x'_s), y_s) \quad .
$$

Secondly,

$$
\min_{y \in \{0,1\}^{S'}} \sum_{s \in S'} \left(-y_s f_{\theta}(x_s') + \log \left(1 + 2^{f_{\theta}(x_s')} \right) \right) = \sum_{s \in S'} \max_{y_s \in \{0,1\}} y_s f_{\theta}(x_s') .
$$

Notation. Let $G = (V, E)$ a digraph.

▶ For any $v \in V$, let

▶ For any $u, v \in V$, let $\mathcal{P}(u, v)$ denote the set of all uv-paths. (Any path is a subgraph. For any node u, the uu -path $({u}, \emptyset)$ exists.)

Let G be acyclic.

▶ For any $v \in V$, let

 $A_v = \{u \in V \mid \mathcal{P}(u, v) \neq \emptyset\} \setminus \{v\}$ the set of ancestors of v (17) $D_v = \{w \in V \mid \mathcal{P}(v, w) \neq \emptyset\} \setminus \{v\}$ the set of **descendants** of v .(18)

Definition. A tuple $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ is called a compute graph, iff the following conditions hold:

► $G = (V \cup D \cup D', E)$ is an acyclic digraph

$$
\blacktriangleright \ \forall v \in V: P_v = \emptyset
$$

- $\blacktriangleright \forall v \in D' : C_v = \emptyset$
- $\blacktriangleright \forall v \in D : P_v \neq \emptyset$ and $C_v \neq \emptyset$

Definition. For any compute graph

 $(V,D,D',E,\Theta,\{g_{v\theta}\colon\mathbb{R}^{P_v}\to\mathbb{R}\}_{v\in(D\cup D')\setminus V,\theta\in\Theta})$, any $v\in V\cup D\cup D'$ and any $\theta \in \Theta$, let $\alpha_{v\theta} \colon \mathbb{R}^V \to \mathbb{R}$ such that for all $\hat{x} \in \mathbb{R}^V$:

$$
\alpha_{v\theta}(\hat{x}) = \begin{cases} \hat{x}_v & \text{if } v \in V \\ g_{v\theta}(\alpha_{P_v\theta}(\hat{x})) & \text{otherwise} \end{cases} \tag{19}
$$

We call $\alpha_{\nu\theta}(\hat{x})$ the activation of v for input \hat{x} and parameters θ . For any $\theta\in\Theta$ let $f_\theta\colon\mathbb{R}^V\to\mathbb{R}^{D'}$ such that $f_\theta=\alpha_{D'\theta}.$ We call $f_\theta(\hat{x})$ the \textbf{output} of the compute graph for input \hat{x} and parameters θ .

Example. Consider the compute graph below with $V = \{v_0, v_1, v_2\}$, $D = \{v_3\}$ and $D' = \{v_4\}.$

Moreover, consider $\Theta = {\theta_0, \theta_1}$ and

\n- \n
$$
g_{v_3\theta} \colon \mathbb{R}^{\{v_0, v_1\}} \to \mathbb{R}
$$
\n such that\n $g_{v_3\theta}(x) = x_{v_0} + \theta_0 x_{v_1}$ \n
\n- \n $g_{v_4\theta} \colon \mathbb{R}^{\{v_2, v_3\}} \to \mathbb{R}$ \n such that\n $g_{v_4\theta}(x) = x_{v_2} + x_{v_3}^{\theta_1}$ \n
\n

This defines the function $f_{\theta}(x) = x_{v_2} + (x_{v_0} + \theta_0 x_{v_1})^{\theta_1}$.

In the following:

- \blacktriangleright We assume $\Theta = \mathbb{R}^J$ for some set J .
- ▶ We consider compute graphs with $|D'| = 1$, i.e. $f_{\theta}(\hat{x}) \in \mathbb{R}$ for every $\hat{x} \in \mathbb{R}^V$.

Problem: The l_2 -regularized non-linear logistic regression problem with respect to labeled data $T=(S,\mathbb{R}^V,x,y)$ and $\sigma\in\mathbb{R}^+$ is to solve

$$
\underset{\theta \in \mathbb{R}^J}{\text{argmin}} \quad \sum_{s \in S} \left(-y_s f_{\theta}(x_s) + \log \left(1 + 2^{f_{\theta}(x)} \right) \right) + \frac{\log e}{2\sigma^2} \|\theta\|^2 \quad . \tag{20}
$$

Remark.

- \blacktriangleright [\(20\)](#page-17-0) is a generalization of linear logistic regression.
- ▶ [\(20\)](#page-17-0) can be non-convex for f_θ non-linear in θ .
- ▶ A local minimum $\hat{\theta} \in \mathbb{R}^{J}$ can be found by means of a steepest descent algorithm.
- ▶ In order to compute $\nabla_{\theta} f_{\theta}$, we describe the **backward propagation** algorithm.

Lemma. Let $j \in J$. For any $v \in V$: $\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = 0$. For any $v \in (D \cup D') \setminus V$:

$$
\frac{\partial \alpha_{v\theta}}{\partial \theta_j} = \sum_{u \in (A_v \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_j} \Delta_{uv}
$$
(21)

with

$$
\Delta_{uv} := \sum_{(V',E') \in \mathcal{P}(u,v)} \prod_{(u',v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}} \quad . \tag{22}
$$

Remark. For any node u: $\Delta_{uu} = 1$. For any u, v with $\mathcal{P}(u, v) = \emptyset$: $\Delta_{uv} = 0$. Proof (idea).

$$
\frac{\partial \alpha_{v\theta}}{\partial \theta_{j}} = \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial \alpha_{u\theta}}{\partial \theta_{j}} \qquad (23)
$$
\n
$$
= \frac{\partial g_{v\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \theta_{j}} + \sum_{u \in P_{v}} \sum_{u' \in P_{u}} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \frac{\partial g_{u\theta}}{\partial \alpha_{u'\theta}} \frac{\partial \alpha_{u'\theta}}{\partial \theta_{j}} \qquad (24)
$$
\n
$$
= \text{repeated application (23)}
$$
\n
$$
= \sum_{u \in (A_{v} \cup \{v\}) \setminus V} \frac{\partial g_{u\theta}}{\partial \theta_{j}} \sum_{(V', E') \in \mathcal{P}(u, v)} \prod_{(u', v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$

Lemma (backward propagation). For all nodes $u \neq w$ such that $\mathcal{P}(u, w) \neq \emptyset$:

$$
\Delta_{uw} = \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}
$$
 (24)

Proof.

$$
\Delta_{uw} = \sum_{(V',E') \in \mathcal{P}(u,w)} \prod_{(u',v') \in E'} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \sum_{(V'',E'') \in \mathcal{P}(v,w)} \prod_{(u',v') \in E'' \cup \{(u,v)\}} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \sum_{(V'',E'') \in \mathcal{P}(v,w)} \prod_{(u',v') \in E''} \frac{\partial g_{v'\theta}}{\partial \alpha_{u'\theta}}
$$
\n
$$
= \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}
$$

 \Box

The backward propagation algorithm computes Δ_{uw} for one node w and all nodes u. It is defined wrt. an arbitrary partial order \lt_C of the nodes such that

$$
\forall u \in V \cup D \quad \forall v \in C_u: \quad v <_C u \tag{25}
$$

Input:

Compute graph $(V, D, D', E, \Theta, \{g_{v\theta} \colon \mathbb{R}^{P_v} \to \mathbb{R}\}_{v \in (D \cup D') \setminus V, \theta \in \Theta})$ Node $w \in V \cup D \cup D'$

for *u* ordered by
$$
\langle c \rangle
$$
 (25)
\n**if** $u = w$
\n $\Delta_{uw} := 1$
\n**else if** $\mathcal{P}(u, w) = \emptyset$
\n $\Delta_{uw} := 0$
\n**else**
\n $\Delta_{uw} := \sum_{v \in C_u} \frac{\partial g_{v\theta}}{\partial \alpha_{u\theta}} \Delta_{vw}$ (24)

^{21/26} $1By$ courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.

Definition. Let $G = (V, E)$ a pixel grid graph and $g: V \to C$ a digital image. Let $m\in\mathbb{N}$ and $X=\mathbb{R}^m$ (a feature space). For any pixel $v\in V$, let $x_v^{(g)}\in X$ (a feature vector associated with the pixel v of the digital image q). Let $f: X \to \mathbb{R}$ (e.g. a linear function learned by logistic regression).

The instance of the trivial pixel classification problem has the form

$$
\min_{y \in \{0,1\}^V} \quad \sum_{v \in V} (-f(x_v)) \, y_v \tag{26}
$$

With the pixel grid graph (V,E) and $c'\colon E\to \mathbb{R}^+_0$, the instance of the smooth pixel classification problem has the form

$$
\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} (-f(x_v)) \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, |y_v - y_w|}_{\varphi(y)} \tag{27}
$$

Remark. Motivation: Prior knowledge that decisions at neighboring pixels v, w are more likely to be equal $(y_v = v_w)$ than unequal $(y_v \neq y_w)$.

A naïve algorithm for the smooth pixel classification problem is **local search** with a transformation $T_v \colon \{0,1\}^V \to \{0,1\}^V$ that changes the decision for a single pixel, i.e., for any $y: V \to \{0, 1\}$ and any $v, w \in V$:

$$
T_v(y)(w) = \begin{cases} 1 - y_w & \text{if } w = v \\ y_w & \text{otherwise} \end{cases}
$$

.

Algorithm.

```
Initially, y: V \rightarrow \{0, 1\} and W = Vwhile W \neq \emptysetW':=\emptysetfor each v \in Wif \varphi(T_v(y)) - \varphi(y) < 0y := T_v(y)W' := W' \cup \{w \in V \mid \{v, w\} \in E\}W := W'
```
Remark.

- ▶ On the one hand, this algorithm is easy to implement and has straight-forward generalizations, e.g., to the case of more than two classes.
- \triangleright On the other hand, it does not necessarily solve smooth pixel classification with two classes to optimality.
- ▶ Next, we will reduce the smooth pixel classification problem with two classes to the well-known minimum st -cut problem that can be solved exactly and efficiently.

Definition. A 5-tuple $N = (V, E, s, t, \gamma)$ is called a network iff (V, E) is a directed graph and $s \in V$ and $t \in V$ and $s \neq t$ and $\gamma : E \to \mathbb{R}^+_0$. The nodes s and t are called the source and the sink of N , respectively. For any edge $e \in E$, γ_e is called the **capacity** of e in N.

Definition. The instance of the minimum st -cut problem wrt. a network $N = (V, E, s, t, \gamma)$ has the form

$$
\min_{x \in \{0,1\}^V} \quad \sum_{vw \in E} \gamma_{vw} \left(1 - x_v\right) x_w \tag{28}
$$

$$
subject to \t x_s = 0 \t(29)
$$

$$
x_t = 1 \tag{30}
$$

Example.

Lemma. The smooth pixel classification problem is reducible to the minimum st-cut problem.

Proof (sketch). For any instance of the smooth pixel classification problem,

$$
\min_{y \in \{0,1\}^V} \quad \underbrace{\sum_{v \in V} c_v \, y_v + \sum_{\{v,w\} \in E} c'_{\{v,w\}} \, (y_v(1-y_w) + (1-y_v)y_w)}_{\varphi(y)}, \qquad (31)
$$

define the instance of the induced minimum st -cut problem in terms of the network (V',E',s,t,γ) such that

$$
V' = V \cup \{s, t\}
$$
(32)
\n
$$
E' = \{(s, v) \in V'^2 \mid c_v > 0\} \cup \{(v, t) \in V'^2 \mid c_v < 0\}
$$

\n
$$
\cup \{(v, w) \in V'^2 \mid \{v, w\} \in E\}
$$
(33)

and $\gamma\colon E'\to \mathbb{R}^+_0$ such that

$$
\forall (s,v) \in E': \quad \gamma_{(s,v)} = c_v \tag{34}
$$

$$
\forall (v, t) \in E': \quad \gamma_{(v,t)} = -c_v \tag{35}
$$

$$
\forall \{v, w\} \in E: \quad \gamma_{(v, w)} = \gamma_{(w, v)} = c'_{\{v, w\}} \quad . \tag{36}
$$