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Summary. In this part of the course, we show that also the learning of partial functions
can be np-hard. Specifically, we show that separating labeled data by a pair of dnfs
defining a partial Boolean function is np-complete.
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Supervised learning

Definition. For any finite, non-empty set S, called a set of samples, any X ̸= ∅, called
an attribute space and any x : S → X, the tuple (S,X, x) is called unlabeled data.

For any y : S → {0, 1}, given in addition and called a labeling, the tuple (S,X, x, y) is
called labeled data.
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Definition: Let (S,X, x, y) labeled data with X = {0, 1}J and J ̸= ∅ finite. Let
f : Θ → RX . Let R : Θ → R+

0 called a regularizer.

▶ For any m ∈ N0, the instance of the partial separability problem is to decide if
there exist θ, θ′ ∈ Θ such that

R(θ) +R(θ′) ≤ m (1)

∀s ∈ y−1(1) : fθ(xs) > 0 (2)

∀s ∈ y−1(0) : fθ′ (xs) > 0 (3)

∀x ∈ X : fθ(x) ≤ 0 ∨ fθ′ (x) ≤ 0 (4)

▶ The instance of the partial separation problem has the form

inf
θ,θ′∈Θ

R(θ) +R(θ′) (5)

subject to ∀s ∈ y−1(1) : fθ(xs) > 0 (6)

∀s ∈ y−1(0) : fθ′ (xs) > 0 (7)

∀x ∈ X : fθ(x) ≤ 0 ∨ fθ′ (x) ≤ 0 (8)

▶ For any L : R× {0, 1} → R+
0 called a loss function and any λ ∈ R+

0 , the instance
of the supervised partial learning problem has the form

inf
θ,θ′∈Θ

λ(R(θ) +R(θ′)) + 1
|y−1(1)|

∑
s∈y−1(1)

L(fθ(xs), 1) +
1

|y−1(0)|

∑
s∈y−1(0)

L(fθ′ (xs), 1)

(9)
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Definition: For any finite, non-empty set X = {0, 1}J and for the sets

Γ =
{(

V, V̄
)
∈ 2J × 2J |V ∩ V̄ = ∅

}
(10)

Θ = 2Γ , (11)

the family f : Θ → {0, 1}X such that for any θ ∈ Θ and any x ∈ X,

fθ(x) =
∑

(J0,J1)∈θ

∏
j∈J0

xj

∏
j∈J1

(1− xj) (12)

is called the family of J-variate disjunctive normal forms (DNFs).

Moreover: For Rl, Rd : Θ → N0 such that for all θ ∈ Θ,

Rl(θ) =
∑

(J0,J1)∈θ

(|J0|+ |J1|) (13)

Rd(θ) = max
(J0,J1)∈θ

(|J0|+ |J1|) (14)

Rl(θ) and Rd(θ) are called the length and depth, respectively, of the DNF defined by θ.



6/10

Definition. For any set S and any ∅ /∈ Σ ⊆ 2S , the set Σ is called a cover of S iff⋃
U∈Σ

U = S . (15)

Definition. Let S be any set, let ∅ /∈ Σ ⊆ 2S and let m ∈ N. Deciding whether there
exists a Σ′ ⊆ Σ such that Σ′ is a cover of S, and |Σ′| ≤ m is called the instance of the
set cover problem with respect to S, Σ and m.

Definition. For any instance (S′,Σ,m) of the set cover problem, the Haussler data
induced by (S′,Σ,m) is the labeled data (S,X, x, y) such that

▶ S = {0} ∪· S′

▶ X = {0, 1}Σ

▶ x0 = 0Σ and

∀s ∈ S′ ∀σ ∈ Σ: xs(σ) =

{
1 if s ∈ σ

0 otherwise
(16)

▶ y0 = 0 and ∀s ∈ S′ : ys = 1
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Lemma. For any instance (S′,Σ,m) of the set cover problem, consider the instance of
the partial separability problem for the family f : Θ → {0, 1}Σ of DNFs, R ∈ {Rl, Rd},
the Haussler data (S,X, x, y) and the bound 2m (for Rl) and m+ 1 (for Rd).

The function h : 2Σ → Θ2 such that for any Σ′ ⊆ Σ, we have h(Σ′) := (θ, θ′) with
θ = {({σ}, ∅) | σ ∈ Σ′} and θ′ = {(∅,Σ′)} has the following properties:

1. h(Σ′) is computable in time O(poly(|Σ′||S|)).
2. If Σ′ solves the instance of the set cover problem then h(Σ′) solves the instance of

the partial separability problem.

The function g : Θ2 → 2Σ such that for all θ, θ′ ∈ Θ2:
g(θ, θ′) ∈ argmin {|Σ′| : Σ′ ∈ {Σ′

0,Σ
′
1}} with

Σ′
0 =

⋃
(Σ0,Σ1)∈θ

Σ0 (17)

Σ′
1 ∈

{
{Σ1 ⊆ Σ | (∅,Σ1) ∈ θ′} if non-empty

{∅} otherwise
(18)

has the following properties:

1. g(θ, θ′) is computable in time O(poly(Rl(θ) +Rl(θ
′)))

2. If (θ, θ′) solves the instance of the partial separability problem then g(θ, θ′) solves
the instance of the set cover problem.

Corollary. The partial separability problem is np-complete.
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Proof (sketch). (⇒) (θ, θ′) = h(Σ′) solves the instance of the partial separability
problem by construction.

(⇐) Firstly, we show that Σ′
0 is a solution to the instance of the set cover problem: On

the one hand:

fθ′ (0
Σ) = 1

⇒ fθ(0
Σ) = 0 (19)

⇒ ∀(Σ0,Σ1) ∈ θ : Σ0 ̸= ∅ . (20)

On the other hand:

∀s ∈ S′ : fθ(xs) = 1

⇒ ∀s ∈ S′ ∃(Σ0,Σ1) ∈ θ : (∀σ ∈ Σ0 : xs(σ) = 1) ∧ (∀σ ∈ Σ1 : xs(σ) = 0) (21)

⇒ ∀s ∈ S′ ∃(Σ0,Σ1) ∈ θ ∃σ ∈ Σ0 : xs(σ) = 1 by (20) (22)

⇒ ∀s ∈ S′ ∃σ ∈ Σ′
0 : xs(σ) = 1 (23)

⇒ ∀s ∈ S′ ∃σ ∈ Σ′
0 : s ∈ σ . (24)
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Secondly, we show that Σ′
1 is a solution to the instance of the set cover problem: On

the one hand:

fθ′ (0
Σ) = 1

⇒ ∃(Σ0,Σ1) ∈ θ′ : Σ0 = ∅ (25)

⇒ {Σ1 ⊆ Σ | (∅,Σ1) ∈ θ′} ̸= ∅ . (26)

On the other hand:

∀s ∈ S′ : fθ(xs) = 1

⇒ ∀s ∈ S′ : fθ′ (xs) = 0 (27)

⇒ ∀s ∈ S′ ∃(Σ0,Σ1) ∈ θ′ : (∃σ ∈ Σ0 : xs(σ) = 0) ∨ (∃σ ∈ Σ1 : xs(σ) = 1) (28)

⇒ ∀s ∈ S′ ∃σ ∈ Σ′
1 : xs(σ) = 1 by (26) (29)

⇒ ∀s ∈ S′ ∃σ ∈ Σ′
1 : s ∈ σ . (30)
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Thirdly,

|g(θ, θ′)| ≤ min{|Σ′
0|, |Σ′

1|} (31)

≤
|Σ′

0|+ |Σ′
1|

2
(32)

≤ 1
2
(Rl(θ

′) +Rl(θ)) . (33)

Fourthly,

|g(θ, θ′)| ≤ min{|Σ′
0|, |Σ′

1|} (34)

≤ |Σ′
0| (35)

≤ Rd(θ) (36)

≤ Rd(θ) +Rd(θ
′)− 1 . (37)


