Machine Learning |

B. Andres, J. Irmai, J. Presberger, D. Stein, S. Zhao

Machine Learning for Computer Vision
TU Dresden

Winter Term 2023/2024

1/26


https://mlcv.inf.tu-dresden.de/courses/23-winter/ml1/index.html

Clustering

Contents.

» This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

2/26



Clustering

Contents.

» This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

» This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

2/26



Clustering

Contents.

» This part of the course is about the problem of decomposing (clustering)
a graph into components (clusters), without knowing the number, size or
any other property of the clusters.

» This generalizes the problem of partitioning a set. It specializes to the latter
for complete graphs.

» Analogously, the problem of decomposing a graph is introduced as an
unsupervised learning problem w.r.t. constrained data.
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Definition.
» A subgraph G’ = (A’, E’) of G is called a component (cluster) of G iff G’
is non-empty, node-induced (i.e. E' = EN (‘g/)) and connected.

» A partition II of the node set A is called a decomposition (clustering) of
G iff, for every U € I, the subgraph (U, EN (3)) of G induced by U is
connected (and thus a component of G).

» We denote by D¢ the set of all decompositions of G.
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Definition.
» A subset M C E of edges is called a multicut of G iff, for every cycle
C C E of G, we have |[CN M| # 1.
» We denote by M the set of all multicuts of G.

Lemma.

» For any decomposition of a graph G, the set of those edges that straddle
distinct components is a multicut of G. This multicut is said to be induced
by the decomposition.

» The map from decompositions to induced multicuts is a bijection from D¢
to Mq.
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Remarks:

» The characteristic function y: E — {0,1} of a multicut y~*(1) decides, for
every edge {a,b} = e € E, whether the incident nodes a and b belong to
the same component (y. = 0) or distinct components (y. = 1).
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Clustering

Remarks:

» The characteristic function y: E — {0,1} of a multicut y~*(1) decides, for
every edge {a,b} = e € E, whether the incident nodes a and b belong to
the same component (y. = 0) or distinct components (y. = 1).

» By the definition of a multicut, these decisions are not necessarily
independent.

Lemma. For any y: E — {0, 1}, the set y~'(1) of those edges that are mapped
to 1 is a multicut of G iff the following inequalities are satisfied:

VC € cycles(G) Ve e C: ye < Z Ye! (1)
e’eC\{e}
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Clustering

Constrained Data

We reduce the problem of learning and inferring multicuts to the problem of
learning and inferring decisions, by defining constrained data (S, X, z,Y") with

S=E (2)

Y=<y:E—{0,1} | VC € cycles(G) Ve € C": yggz%/ 3)
e'cC\{e}
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» We consider a finite, non-empty set V/, called a set of attributes, and the
attribute space X =R"
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Familiy of functions

» We consider a finite, non-empty set V/, called a set of attributes, and the
attribute space X =R"

» We consider linear functions. Specifically, we consider © = RY and
f:© — R¥ such that

VOeOVieR":  fo(d)=> 60,8, =(0,3) . (4)

veV
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Xs

0, O —CE Ys

veV seS

'
Oz
Random Variables

» For any {a,b} =s €S =FE, let X, be a random variable whose value is a
vector 5 € RY, the attribute vector of s.
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Xs

seS

0, O —CE Ys

veV

'
Oz
Random Variables

For any {a,b} = s € S =E, let X, be a random variable whose value is a
vector z, € RV, the attribute vector of s.

For any s € S, let Ys be a random variable whose value is a binary number
ys € {0,1}, called the decision of joining {a,b} = s.

For any v € V, let ©, be a random variable whose value is a real number
0, € R, a parameter of the function we seek to learn.

Let Z be a random variable whose value is a subset Z C {0, 1} called the
set of feasible decisions. For clustering, we are interested in Z =)/, the
set characterizing multicuts of G.
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Xs

0, O —CE Ys

veV seS

'
Oz

Factorization

P(X,Y,Z,0)=P(Z|Y) [[P(Y:| X:,0) [[P(©.) []P(Xs)

seS veVv

seS
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Factorization

» Supervised learning:

PO XY, Z)

12/26



Clustering

Factorization

» Supervised learning:

P(X,Y,Z,0)

P(X,Y,Z2)

P(Z|Y)P(Y|X,0)P
P(Z| X,Y)P(X,Y)

_P(ZIY) P(Y | X,0) P(X) P(©)

P(Z]Y)P(X,Y)

_ PV |X,0)P(X)P(O)
P(X,Y)

x P(Y | X,0) P(©)

_HPY|X e) [ p©.

veV

PO|X,Y,Z) =
(X)P(©)
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Factorization

» Inference:

P(Y | X, Z2,6)
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Factorization
» Inference:
P(X,Y,Z,0)
WIX20="px 7 6)
_P(Z]Y)P(Y | X,0)P(X)P(O)
P(X, Z, @)

x P(Z|Y)P(Y | X,0)

= P(z|Y)[] P(Y: | X..0)
seS
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Clustering

Distributions

» Sigmoid distribution

1

veesS: prixee() = Tiphey
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Clustering
Distributions
» Normal distribution with ¢ € R™:

YvoeV: 0,) = ——
v p@)v( ) U\/ﬁ

0.4 R
5
~ 0.2 1
o]
S

U ! ! ! ! ! il
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Clustering

Distributions

» Uniform distribution on a subset

1 ifyez

vZ C {0,1}° vy € {0,1}° pziy(2,y) .
0 otherwise

Note that pzy (), y) is non-zero iff the labeling y: S — {0,1} defines an
multicut of G.
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Clustering

Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.
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Lemma. Estimating maximally probable parameters 6, given attributes x and
decisions y, i.e.,

argmax pe|x,v,z(0,z,y,))
0erRY

is an [2-regularized logistic regression problem.

Proof. Analogous to the case of deciding, we obtain:

argmax pe|x.,v,z(0,7,y,Y)

6eRrRY
. @ 1
= argmin Z (fys fo(zs) + log (1 4 2fe( 5>>) + Og2e||9||§ .
0eRV  Cs 20
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Clustering

Lemma. Estimating maximally probable decisions y, given attributes z, given
the set of feasible decisions ), and given parameters 0, i.e.,

argmax pY\X,Z,@(y7:C7y7 9) (7)
ye{0,1}5

assumes the form of the minimum cost multicut problem:

argmin 2(7(9, Ze)) Ye (8)

y: E—{0,1} cCE

subject to VC € cycles(G) Ve € C':  ye < Z Yer (9)
e’eC\{e}
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Lemma. Estimating maximally probable decisions y, given attributes z, given
the set of feasible decisions ), and given parameters 0, i.e.,

argmax pY\X,Z,@(y7:C7y7 9) (7)
ye{0,1}5

assumes the form of the minimum cost multicut problem:

argmin 2(7(9, Ze)) Ye (8)

y: E—{0,1} cCE

subject to VC € cycles(G) Ve € C':  ye < Z Yer (9)
e’eC\{e}

Theorem. The minimum cost multicut problem is NP-hard.

Bansal et al. (2004) reduce this problem to the k terminal cut problem whose
NP-hardness is an important result Dahlhaus et al. (1994).
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We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.
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We will generalize the three local search algorithms we have defined for the set
partition problem to the minimum cost multicut problem.

For simplicity, we define ¢ : E — R such that
Vee S: ce=—(0,zc) (10)

and write the (linear) cost function ¢ : {0,1}” — R such that

vy € {0,137 p(y) = ceye (11)

eckE
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Greedy joining algorithm:

» The greedy joining algorithm is a local search algorithm that starts from any
initial decomposition.
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Clustering

Greedy joining algorithm:
» The greedy joining algorithm is a local search algorithm that starts from any
initial decomposition.
» |t searches for decompositions with lower cost by joining pairs of
neighboring (!) components recursively.

» As components can only grow and the number of components decreases by
one in every step, one typically starts from the finest decomposition Il of
A into one-elementary components.
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Definition. Let G = (A, E) be any graph.
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Definition. Let G = (A, E) be any graph.

» For any disjoint sets B,C C A, the pair {B, C} is called neighboring in G
iff there exist nodes b € B and ¢ € C such that {b,c} € E.

» For any decomposition II of a graph G = (A, E), we define
En={{B,C}e (})|FbeB3ceC: {bct e E} . (12)

» For any decomposition IT of G = (A, E) and any {B,C} € &, let
joing[I1] be the decomposition of G obtained by joining the sets B and C'
inII, i.e.

joing [l = (II\ {B,C}HUu{BUC} . (13)
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Clustering

IT' = greedy-joining(IT)

choose {B,C} € argmin o(y°"s'c’ M) _ oy
{B',C'}eén
if oy ety —p(y") <0
IT' := greedy-joining(join g [I1])
else
Ir:=1u
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Greedy moving algorithm:

» The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.
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Greedy moving algorithm:
» The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.

» |t searches for decompositions with lower cost by recursively moving

individual nodes from one component to a neighboring! component,
possibly a new one.
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Clustering

Greedy moving algorithm:
» The greedy moving algorithm is a local search algorithm that starts from
any initial decomposition, e.g., the fixed point of greedy joining.
» |t searches for decompositions with lower cost by recursively moving
individual nodes from one component to a neighboring! component,
possibly a new one.

» When a cut node is moved out of a component or a node is moved to a new
component, the number of components increases. When the last element is
moved out of a component, the number of components decreases.
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Definition. For any graph G = (A, E) and any decomposition II of G, the
decomposition IT is called coarsest iff, for every U € II, the component
(U,EN (3)) induced by U is maximal.
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Definition. For any graph G = (A, E) and any decomposition II of G, the
decomposition IT is called coarsest iff, for every U € II, the component
(U,EN (3)) induced by U is maximal.

Lemma. For any graph G, the coarsest decomposition is unique. We denote it
by II¢,.

Definition. For any graph G = (A, E), any decomposition IT of A and any

a € A, choose U, to be the unique U, € II such that a € U,, and let
Noe={0} U{Well|lag W A FweW: {a,w} € E} (14)
Ga = (Ua \ {a}, EN (Ua\;a})) (15)

For any U € N, let move,u[I1] the decomposition of A obtained by moving the
node a to the set U, i.e.

move,u [T = T\ {U,, Uy U{U U {a}} UTIE, . (16)
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IT" = greedy-moving(T)

choose (a,U) € argmin o(y™ e v’ M) — oyt
a’€A, U’ENa/
if p(ymeav i) —o(y™) <0
IT" := greedy-moving(move,u [I1])
else
=1
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Clustering

IT" = greedy-moving(T)

choose (a,U) € argmin o(y™ e v’ M) — oyt
a’€A, U'eN,,
if p(ymeav i) —o(y™) <0
IT" := greedy-moving(move,u [I1])
else
=1

A generalization of this algorithm by means of the technique of Kernighan and
Lin (1970) is analogous to the greedy moving algorithm for the set partition
problem.
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Summary.

»

|

| 2

>

Learning and inferring decompositions (clusterings) of a graph is an
unsupervised learning problem w.r.t. constrained data whose feasible
labelings characterize the multicuts of the graph

The supervised learning problem can assume the form of l2-regularized
logistic regression where samples are pairs of neighboring nodes and
decisions indicate whether these nodes are in the same or distinct
components

The inference problem assumes the form of the NP-hard minimum cost
multicut problem

Local search algorithms for tackling this problem are greedy joining, greedy
moving, and greedy moving using the technique of Kernighan and Lin.
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