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Pixel classification

» In practice, solutions to the trivial pixel classification problem can be
improved by exploiting prior knowledge about feasible combinations of
decisions.

» Next, we consider prior knowledge saying that decisions at neighboring
pixels v, w € V are more likely to be equal (y, = vy) than unequal

(Yo 7 Yu)-
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Pixel classification

Definition 1. For any pixel grid graph (V, E), any ¢: V — R and any
d:E— Rg, the instance of the smooth pixel classification problem wrt. ¢
and ¢’ has the form

min Z Co Yo + Z Cl{v,w} Yo — Yol (1)

0,1}V
velo. Y Lo {vw}eE

e (y)
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Pixel classification

A naive algorithm for this problem is local search with a transformation
T,: {0,1}V — {0,1}V that changes the decision for a single pixel, i.e., for any
y: V. —{0,1} and any v,w € V:

7.(9) () = {1 e T

Yuw otherwise

Initially, y: V — {0,1} and W =V
while W # 0
W' =0
foreach v e W
if (T (y)) — ¢(y) <0

y = Tu(y)
W' =W U{w e V|{v,w} € E}
W =W’

4/18



Pixel classification

So far, we have studied a local search algorithm for the smooth pixel
classification problem.

On the one hand, this algorithm is easy to implement and has
straight-forward generalizations, e.g., to the case of more than two classes.
On the other hand, it does not necessarily solve smooth pixel classification
with two classes to optimality.

Next, we will reduce the smooth pixel classification problem with two
classes to the well-known minimum st-cut problem that can be solved
exactly and efficiently.

The notes are organized as follows

» Definition of the minimum st-cut problem

» Submodularity
» Reduction of the smooth pixel classification problem
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Definition 2. A 5-tuple N = (V, E, s,t,7) is called a network iff (V, E) is a
directed graph and s € Vandt € Vand s #t and v: E — R},

The nodes s and ¢ are called the source and the sink of N, respectively.

For any edge e € E, 7. is called the capacity of e in V.
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Definition 3. Let (V, E) be a directed graph. Let s€ V andt € V and s # ¢.

» X CV is called an st-cutset of (V,E) iff s€ X and t ¢ X.

» Y C FE is called an st-cut of (V| E) iff there exists an st-cutset X such
that Y ={fvw e E|lve X Ahw ¢ X}

s s s s
vl/T{\‘/vg vlé/.vg vlévg v1@02
o . o .

t t t t
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Definition 4. The instance of the minimum st-cut problem wrt. a network
N = (V,E,s,t,v) is to

min 1—xy) Tw
zc{0,1}V UEE( v) w Tow

subject to z, =0

$t:1
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Definition 5. A lattice (5, X) is a set .S, equipped with a partial order <, such
that any two elements of S have an infimum and a supremum wrt. <.

Example. ({0,1}%, <) with < := {(s5,£) € S x S | 51 < t1 A s2 < t2}.

For any s,t € {0,1}?,

sup(s,t) = (max{si,t1}, max{sa,t2})
inf(s,t) = (min{s1, 1}, min{sa,t2})
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Definition 6. A function f : S — R is called submodular wrt. a lattice (5, <)
iff

Vs,t€ S f(inf(s,t)) + f(sup(s,t)) < f(s) + f(2) - (5)

Lemma 1. The sum of two submodular functions is submodular.
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Lemma 2. For any f :{0,1}> — R, the following statements are equivalent.

1. fis is submodular wrt. the the lattice ({0, 1}?, <)

2. f(0,0) + f(1,1) < f(1,0) + f(0,1)
3. The unique form

Cp + c{13%1 + c(23 T2 + C{1,2} T1T2

of f is such that c(1 2y <0.
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Proof.

> f(0,0)+ f(1,1) < f(1,0) + f(0,1) is the only condition in

Vs,t € S

f(inf(s,t)) + f(sup(s, 1)) < f(s) + f(t)

which is not generally true. Thus, (1.) is equivalent to (2.).

» We have

Therefore,

f(0,0) = ¢y

f(1,0) = cp + cq1y

f(0,1) =y + cq2y

FL1) =co+ ey +epy tepay

C{1,2} = f(lv 1) - f(l,O) - f(ov 1) + f(0,0)

and thus, (2.) is equivalent to (3.).
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Lemma 3. For every f: {0,1}> — R, there exist unique ap € R and
ai,ai,az,as, a12,a1s € Ry such that

aiai = aza3 = aizajs =0 (6)

and

+aiz1 +ai(l —x1)
+ azxa + az(1 — x2)
+ aroz1z2 + a2 (1 — xz1)xo . (M
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Proof.
» Comparison of (7) with the unique form
Cp + c{13%1 + ¢(23 T2 + C{1,2} L1 T2
yields

ap +ai +as = ¢y
a1 —ai = C¢{1}
a2 — as + ajy = C{2}

@12 — iz = C{1,2}

» By these equations (from bottom to top), (6) and ¢ define a uniquely.

(8)

14/18



Lemma 4. For every submodular f: {0,1}* — R and its unique coefficient
ao € R from Lemma 3,

min _fy — ao 9)

ze{0,1}2

is equal to the weight of a minimum st-cut in the graph below whose edge
weights are the (unique, non-negative) coefficients from Lemma 3.

Moreover, f is minimal at 2 € {0, 1} iff {j € {1,2} | 2; = 0} is a minimum
st-cutset of the above graph.
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Proof.

» Submodularity of f implies ai2 = 0 in (8), by Lemma 2 and (6).

» Comparison of the four possible minima of f,

£(0,0) =ao +ai +as
f(1,0) =ao + a1+ a3
f(0,1) = ao + a7 + a2 + ais
f(1,1) =ao+ a1 +az+ a2 ,

with the four possible minimum cuts below proves the Lemma.

a a2 ay - a2 V@ a2 ay - a2
i i afs 4 ¥ aiz 4

@ >
’ Taz ai as ai as
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Definition 7. For any smooth pixel classification problem

min Z Cy Yv + Z Cf[v,w} va - yw‘

0,1}V
ve{o.1} veV {v,w}eE

e (y)

the induced minimum st-cut problem is defined by the network
(V' E' s,t,7) such that V' = V U {s,t},

E' ={(s,v) € V|, >0} U{(v,t) € V"* | ¢, < 0}
U{(v,w) € V"* | {v,w} € E}
and v: E' — Ry such that

Y(s,v) € E: V(s,w) = Co
Y(v,t) € E: Y(w,t) = —Co
V{’U, w} ekl: Y(w,w) = V(w,w) = C’{v,w} .

(10)

(11)

(12)
(13)
(14)
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Lemma 5. For any smooth pixel classification problem wrt. a pixel grid graph
G = (V, E) and the induced minimum st-cut problem with the network
(V',E',s,t,7), §: V — {0,1} is an optimal pixel classification iff

{v € V| g, = 0} is an optimal st-cutset.

Proof (sketch). The function ¢ is submodular, by Lemma 1 and ¢’ > 0.
The statement holds by Lemma 3 and the fact that for all y € {0,1}"":

eW) = cotut D Clowy Woll —yw) + (1= v)yw) -

veV {v,w}eE
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