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Digital images

For any n € N, let [n] := {0,...,n — 1}.

Definition 1. A digital image of width ny, € N and height n; € N with colors
Cis a map f: [no] X [n1] — C.

Examples.

Gray levels Cc =H{0,...,255}

RGB colors C =1o,...,255}3

Real numbers E.g. C =Ror C =10,1]
Real tuples Eg.C=R"or C=10,1]"

Definition 2. For any digital image f: [no] X [n1] — C, consider the graph
G = (V,E) with V = [no] x [n1] and such that for any u,v € V' we have
{u,v} € Eif and only if [u —v| = 1. It is called the pixel grid graph of the
image. Its nodes are called the pixels of the image.
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Point operator

Definition 3. For any ng,n1 € N and any set C, a point operator on digital
images of width ng, height n1 and with colors C' is a function

o C[nolx[m] N C["O]X[nl] (1)
such that there exists a function
x: C X [ng] x [n1] = C (2

such that for every digital image f: [no] X [n1] — C and every pixel
(z,y) € [no] X [n1], we have

So(f)(mvy) :X(f(xvy)7$7y) . (3)

Remark. The color o(f)(z,y) of the image ¢(f) at the pixel (x,y) depends
only on the color f(z,y) of the image f at that same location, and on the
location (z,y) itself.

Example. Every {: C — C defines a point operator p¢: f+— o f.
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Gamma Operator

Definition 4. Let C = [0, 1]. For any v € (0, 00) and the function
&:C — C:cw 7, the point operator pe: f — o f is called the gamma
operator.
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Histogram equilibration

Definition 5. The histogram of a digital image f: [no] X [n1] = C C R is the
function h: C' — Ny such that for any ¢ € C we have

h(e) = [{r € [no] x [m] [ f(r) = c}| (4)

The cumulative distribution of colors is the function H: C — [0, 1] such that
for any ¢ € C' we have

1
H(c) = no T Z h(c) (5)
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Histogram equilibration

Definition 6. For any C' = [¢™,c¢"] C R and any monotonous function

H:C — [0,1] such that H(c") = 1, H-equilibration is the function
§H : [C_7 c

c—c + (¢t —c¢)H(c)

For fixed H and fixed no,n1 € N, H-equilibration defines a point operator that

we call the H-equilibrator:

olmolxinil _y ~lnolx[n1]

f—=8&uof

For any digital image f with the cumulative distribution H of colors C, we call
the image ¢¢,, (f) the self-equilibration of f.

Pepr -

Question. Is self-equilibration a point operator?
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Histogram equilibration
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Histogram equilibration
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Linear operators

Lemma 1. An operator : RI"0IxIml _, RIrolx[m1l s finear if and only if there
exists a: ([no] % [n1])?> = R such that for any (image) f € R"01*[1] and any
(pixel) (z,y) € [no] x [n1], we have

no—1ln;—1

(@) =D > awyn F(G. ) . (6)
j=0 k=0
o(f)(z,y) =
Qzy.- . f

More restrictive than such an operator with (ngn1)? coefficients is:

o(f)(z,y) = ] B

Gy : Say f
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Linear operators

Even more restrictive is the typical setting in which we are given mg,m; € N
and g: [mo] X [m1] — R and

o(f)(z,y) = D ,y>

g : Sy f

Il
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Remark 1.

1. f needs to be extended in order for ¢(f) to be well-defined.

2. g uniquely defines a linear operator @,.

3. lts application to images f defines a binary operation f ® g := g4(f).
4. g is itself a digital image.
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Linear operators

Definition 7. For the set R? of all functions from Z to R, convolution is the
operation *: R% x RZ — R” such that for any f,¢: Z — R and any t € Z:

(f*g)(t Z flt+s)g(—s) - (7)

s$=—00

For the set RZ*Z of all functions from Z x Z to R, convolution is the
operation *: RZ*% x R**% — R?*% such that for any f,g: Z x Z — R and any
(z,y) €L XL

[e<) oo

(fxo)@y)= > > fla+iy+kg(—j—k) . (8)

j=—00 k=—o0
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Linear operators

Lemma 2. For any f,g,h € RZ*Z and any a € R, we have:
fxg=gx*f (commutativity)
[x(gxh)=(f*g)*h (associativity)
f*(g+h)=(fxg9)+(f*h) (distributivity)
a(fxg)=(af)xg (associativity with )

(9)
(10)
(11)
(12)
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Linear operators

Definition 8. For any C' # (), the operator X : U, . e colxml _, gExZ

such that for any ng,n1 € N, any f: [no] x [n1] — C and any (z,y) € Z* we
have

fx,y) if (z,y) € [no] x [na]
0 otherwise

X(N)(@,y) = { (13)

is called the infinite 0-extension of digital images.

Definition 9. For any C # () and any no,n1 € N, the map

Rngony 2 CEX% — ¢lmolxIml sych that for any f: Z x Z — C and any
(z,y) € [no] X [n1], we have R,.(f)(z,y) = f(z,y) is called the
(no,n1)-restriction of infinite digital images.
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Linear operators

Definition 10. For any 7,k € Z, the operator S;;,: C**% — C%*% such that for
any z,y € Z, we have S;i(f)(z,y) = f(z + j,y + k) is called the (z,y)-shift
of infinite digital images.

Definition 11. The operator L: CZ*% — C?*% such that for any z,y € Z, we
have L(f)(z,y) = f(—z,—y) is called the reflection of infinite digital images.
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Linear operators

x[n1]

Definition 12. For any no,n1, mo,m1 € N, any f € ¢l , any
g € Clmolxtml gy = — | mo=1] and d; = — | 4~], the convolution of f

and g is defined as

F*g:= Ruogn, (X(f) * Saga, (X(9))) (14)

Lemma 3. For any no,n1,mo,m1 € N, any f € C"oX["1] and any

ge Clmolx[mi].
f®g=f=L(g) (15)
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Linear operators

Definition 13. For any o € R™ and any m € Ny (typically: m > 30), for the

function

2
ot
w: R—=R: t—e 202

and the number

the functions
go: [Pm+1x[1]—=-R: (z,0)—
gi: [IIxP2m+1 —-R: (0,y)—

are called Gaussian averaging filters.

w(j —m)

N

w(j —m)

N

(16)

(17)

(18)
(19)
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Linear operators

f*g0o*q

f*go*q

=10.0
m = 30

o
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Linear operators
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Linear operators

2f = (f *go*g1)
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Linear operators

Definition 14. The discrete derivatives of an infinite digital image
f:17Z xXZ — R are defined as

Oof = g=*do
81f::g*d1

with

dO = (170571)

N | =

di = = 0

N —

The discrete gradient is defined as

vi-(57)

and |V f| = /(00f)? + (01 f)? is commonly referred to as its magnitude.

(20)
(21)

(22)

(23)

(24)
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Linear operators

f*do f*d1
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Linear operators

V([ xdo)? + (f di)?
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Non-linear operators

Definition 15. Let ng,n1 € N, let V = [ng] x [n1] and let C C R. Given

» ametricds : V x V — R and a decreasing ws: RS — [0, 1]
» a metric d. : C x C — R} and a decreasing w.: R} — [0,1]

» a N :V — 2" that defines for every pixel v € V a set N(v) C V called
the spatial neighborhood of v

» the v: CV — RY, called normalization, such that for any digital image
f:V = C and any pixel v € V:

V()= D w(ds(v,0") welde(f(v), f(V))) (25)

v’ €N (v)

the bilateral filter w.r.t. ds, ws, de, w. and N is the 3: CV — (RC)Y such
that for any digital image f : V — C and any pixel v € V:
1

B = S welds(0,0)) welde(£(0), F0)) (') (26)
ZRIONR- N
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Non-linear operators

Example.

> d,(v,v") = ||[v — '||]2 and, for a filter parameter o > 0:

wno) = —— e (- ) (27)

» d.(g9,9') =|g — g’| and, for a filter parameter o. > 0:

1
we(x) = 28
@) =17 = (28)
> for a filter parameter n € R
N@) ={v € V|ds(v,v") <n} (29)
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Non-linear operators

Definition 16. Let no,n1 € N, let V = [ng] X [n1], let C C R and let

N : V — 2V define for every pixel v € V a set N(v) C V called the spatial
neighborhood of v. The median operator wrt. N is the function

M:CV — CV such that forany f: V — C and any v € V:

M(f)(v) = median f(N(v)) (30)
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Non-linear operators

Filtered image
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Non-linear operators

Morphological operators

» We may identify any binary infinite digital image f: Z% — {0,1} with its
support set f~1(1) = {v € Z* | f(v) = 1}.

» This allows us to apply operations from the field of binary mathematical
morphology to binary infinite digital images.
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Non-linear operators

Binary image
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Non-linear operators

Definition 17. For any A, B C 72, we define
AcB:={veZ|B+vCA} (31)
AeB:={veZ’| —B+vnNA+#0} (32)

and call these operations erosion and dilation. Moreover, we call the
operations

AoB:=(AcB)®B (33)
AeB:=(A®B)& B (34)

—

opening and closing.

Definition 18. For any (typically small) support set B called a structuring
element and any morphological operation ®, the operator

wen: {0,1}2%% 5 £0,1}2*% such that for any (infinite binary digital image)
f: 2% —{0,1} and any (pixel) v € Z?, we have pgr(f)(v) = 1 if and only if
v € f71(1) ® B is called the morphological operator wrt. ® and B.
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Non-linear operators

Binary image
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Non-linear operators

Binary image
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Non-linear operators

Binary image
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Non-linear operators

Binary image Closing
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Non-linear operators

Definition 19. For any no,n1 € N, the set V = [no] X [n1] and the pixel grid
graph G = (V, E), an operator ¢: N§' — N{ is called a (connected)
components operator if for any digital image f: V' — Np and any pixels
v,w € V, we have p(f)(v) = o(f)(w) iff there exists a vw-path in G along
which all pixels have the color zero.
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Non-linear operators

Binary image Connected component labeling
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Non-linear operators

size t componentsImage(
Marray<size t> const & image,
Marray<size t> & components
) {
components.resize({image.shape(0), image.shape(1)});
PixelGridGraph pixelGridGraph({image.shape(@), image.shape(1)});
size t component = 0;
stack<size t> stack;
for(size t v = 0; v < pixelGridGraph.numberOfVertices(); ++v) {
Pixel pixel = pixelGridGraph.coordinate(v);
if (image(pixel[0], pixel[l]) ==
&& components(pixel[0], pixel[1l]) == 0) {
++component;
components(pixel[0], pixel[1l]) = component;
stack.push(v);
while(!stack.empty()) {
size t const v = stack.top();
stack.pop();
for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
it != pixelGridGraph.verticesFromVertexEnd(v); ++it) {
Pixel pixel = it.coordinate();
if(image (pixel[0], pixell[1]) ==
& components (pixel[0], pixel[1l]) == 0) {
components (pixel[0], pixel[1]) = component;
stack.push(*it);

}
}

return component; // number of components
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Non-linear operators

Definition 20. For any no,n1 € N, the set V = [no] X [n1] and the pixel grid
graph G = (V, E), the distance operator : N§ — N§ is such that for any
digital image f: V — Ng and any pixel v € V, the number ¢(f)(v) is the

minimum distance in the pixel grid graph from v to a pixel w with f(w) = 1.
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Non-linear operators

Binary image
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Non-linear operators

1size t distanceImage(

2 Marray<size t> const & image,

3 Marray<size t> & distances

4) {

5) distances.resize({image.shape(0), image.shape(1)}, 0);

6 GridGraph pixelGridGraph({image.shape (@), image.shape(1)});
7 size t distance = 0;
8 array<stack<size t>, 2> stacks;

9 for(size t v = 0; v < pixelGridGraph.numberOfvertices(); ++v) {
10 Pixel pixel = pixelGridGraph.coordinates(v);

11 if(image(pixel[0], pixel[1l]) != 0)

12 stacks[0].push(v);

13

14 ++distance;

15 for(;;) {

16 auto & stack = stacks[(distance - 1) % 2];

17 if(stack.empty())

18 return distance - 1; // maximal distance

19 while(!stack.empty()) {

20 size t const v = stack.top();

21 stack.pop();

22 for(auto it = pixelGridGraph.verticesFromVertexBegin(v);
23 it != pixelGridGraph.verticesFromvertexeEnd(v); ++it) {
24 Pixel pixel = it.coordinate();

25 if(image(pixel[0], pixel[1])

26 && distances(pixel[0], pixel[1l]) == 0) {

27 distances(pixel[0], pixell[1l]) = distance;

28 stacks[distance % 2].push(*it);

29 }

30 }

31 }

32 ++distance;

33 }

34}
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Non-linear operators

For any set V of pixels and neighborhood function N: V — 2V,
non-maximum suppression is the operator onums: RV — RY such that for
each digital image f: V — R and all pixels v € V:

f(v) if f(v) = max f(N(v))

35
0 otherwise (35)

enms(f)(v) = {
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Edge and corner detection

Edge detection®
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Edge and corner detection
Canny’s edge detection algorithm! has four steps

1. Gradient computation from digital image f: V — R:

g=\0of +0Lf std: :hypot in C4++ (36)
a = atan2(01 f, 0o f) std::atan2 in C4++ (37)

2. Directional non-maximum suppression of g:

312 |1
0 0
11213

3. Double thresholding with 6o, 61 € R such that 6y < 01: A (any) pixel
v € V is taken considered to be a strong edge pixel iff 01 < g(v) and is
taken to be a weak edge pixel iff 8y < g(v) < 6.

4. Weak edge classification: A (any) pixel v € V is taken to be an edge pixel
iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a
strong edge pixel in the 8-neighborhood of v.

1J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679-698, 1986
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Edge and corner detection

Corner detection?

1ht‘cps ://en.wikipedia.org/wiki/Corner_detection 41/45
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Edge and corner detection

Definition 21. Let ng,n1 € N, let V = [no] x [n1], let f: V — R a digital
image, let 0y, 91 be discrete derivative operators, and let N: V — RY.

For each v € V:

» Let A(v) be the |[N(v)| x 2-matrix such that for every w € N(v), we have
Aw.(v) = ((Bof)(w), (01 f)(w)) (38)

» Let k,: N(v) — Ry such that D wen(w) v(w) = 1.

» Define the structure tensor of f at v wrt. k, as the 2 X 2-matrix

Sk(f)(v) := Z ko (w) AL (v) Ay (v) (39)
weEN (v)
~ @) (@of)w)(@ f)(w)
= 2 hw) ((8of)(w)(81f)(w) (00 f)? (w) )

weN (v)

(40)
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Edge and corner detection

Remark 2. Fix a direction by choosing ~ € R? with |r| = 1 and consider the
k,-weighted squared projection of the gradient of the digital image:

Pw)= > ko(w)|Aw () r|? (a1)
weN (v)
= Z kv(w) rTAz.(U)Aw.(U) r (42)
weN (v)
- ( Z kv(w)Az.(v)Aw.(v)> r (43)
weN (v)
= TTS(U) r (44)

With the spectral decomposition

S(v) = 01(v)s1(0)s1 (v) + 02(v)s2(v)s (v) (45)

we obtain
Pr(v) = " (01(0)s1(0)sT (v) + o2 (v)s2(v)s3 (v) ) 7 (46)
= 01(v)[s1(0) - 7* + o2(v)|s2(v) - 7|* (47)
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Edge and corner detection

Remark 3.

» If 01 =02 =0, we have P,.(v) = 0 for any direction r. l.e. the image is
constant.

» If o1 > 0 and o2 = 0, we can choose a direction r such that P,(v) = 0.
l.e. the gradient of the image is non-zero and constant.

» If 01,02 > 0, we cannot choose r such that P.(v) = 0. l.e. the gradient of
the image varies across N (v).
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Edge and corner detection

Definition 22. Let V the set of pixels of a digital image, let S: V — R?*? such
that for any v € V, S(v) is the structure tensor of the image at pixel v, and let
o1(v) > 2(v) > 0 be the eigenvalues of S(v). Harris’ corner detector? wrt. a
neighborhood function N: V — 2V refers to the function wnwms o 2.

2C. Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference.
Vol. 15. 1988
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