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Digital images

For any n ∈ N, let [n] := {0, . . . , n− 1}.

Definition 1. A digital image of width n0 ∈ N and height n1 ∈ N with colors
C is a map f : [n0]× [n1] → C.

Examples.

Gray levels C = {0, . . . , 255}
RGB colors C = {0, . . . , 255}3
Real numbers E.g. C = R or C = [0, 1]
Real tuples E.g. C = Rn or C = [0, 1]n

Definition 2. For any digital image f : [n0]× [n1] → C, consider the graph
G = (V,E) with V = [n0]× [n1] and such that for any u, v ∈ V we have
{u, v} ∈ E if and only if |u− v| = 1. It is called the pixel grid graph of the
image. Its nodes are called the pixels of the image.
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Point operator

Definition 3. For any n0, n1 ∈ N and any set C, a point operator on digital
images of width n0, height n1 and with colors C is a function

φ : C [n0]×[n1] → C [n0]×[n1] (1)

such that there exists a function

χ : C × [n0]× [n1] → C (2)

such that for every digital image f : [n0]× [n1] → C and every pixel
(x, y) ∈ [n0]× [n1], we have

φ(f)(x, y) = χ(f(x, y), x, y) . (3)

Remark. The color φ(f)(x, y) of the image φ(f) at the pixel (x, y) depends
only on the color f(x, y) of the image f at that same location, and on the
location (x, y) itself.

Example. Every ξ : C → C defines a point operator φξ : f 7→ ξ ◦ f .
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Gamma Operator

Definition 4. Let C = [0, 1]. For any γ ∈ (0,∞) and the function
ξ : C → C : c 7→ cγ , the point operator φξ : f 7→ ξ ◦ f is called the gamma
operator.

γ = 1
4

γ = 1
2

γ = 1 γ = 2 γ = 4
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Histogram equilibration

Definition 5. The histogram of a digital image f : [n0]× [n1] → C ⊆ R is the
function h : C → N0 such that for any c ∈ C we have

h(c) = |{r ∈ [n0]× [n1] | f(r) = c}| (4)

The cumulative distribution of colors is the function H : C → [0, 1] such that
for any c ∈ C we have

H(c) =
1

n0 n1

∑
c′∈f([n0]×[n1])

c′≤c

h(c) (5)
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Histogram equilibration

Definition 6. For any C = [c−, c+] ⊆ R and any monotonous function
H : C → [0, 1] such that H(c+) = 1, H-equilibration is the function

ξH : [c−, c+] → [c−, c+]

c 7→ c− + (c+ − c−)H(c)

For fixed H and fixed n0, n1 ∈ N, H-equilibration defines a point operator that
we call the H-equilibrator:

φξH : C [n0]×[n1] → C [n0]×[n1]

f 7→ ξH ◦ f

For any digital image f with the cumulative distribution H of colors C, we call
the image φξH (f) the self-equilibration of f .

Question. Is self-equilibration a point operator?



7/45

Histogram equilibration
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Histogram equilibration
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Linear operators

Lemma 1. An operator φ : R[n0]×[n1] → R[n0]×[n1] is linear if and only if there
exists a : ([n0]× [n1])

2 → R such that for any (image) f ∈ R[n0]×[n1] and any
(pixel) (x, y) ∈ [n0]× [n1], we have

φ(f)(x, y) =

n0−1∑
j=0

n1−1∑
k=0

axyjk f(j, k) . (6)

φ(f)(x, y) =

axy·· · f

More restrictive than such an operator with (n0n1)
2 coefficients is:

φ(f)(x, y) =
(x, y)

gxy · Sxyf
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Linear operators

Even more restrictive is the typical setting in which we are given m0,m1 ∈ N
and g : [m0]× [m1] → R and

φ(f)(x, y) =
(x, y)

g · Sxyf

=

m0−1∑
j=0

m1−1∑
k=0

g(j, k)f
(
x+ j −

⌊
m0−1

2

⌋
, y + k −

⌊
m1−1

2

⌋)
Remark 1.

1. f needs to be extended in order for φ(f) to be well-defined.

2. g uniquely defines a linear operator φg.

3. Its application to images f defines a binary operation f ⊗ g := φg(f).

4. g is itself a digital image.
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Linear operators

Definition 7. For the set RZ of all functions from Z to R, convolution is the
operation ∗ : RZ × RZ → RZ such that for any f, g : Z → R and any t ∈ Z:

(f ∗ g)(t) =
∞∑

s=−∞

f(t+ s) g(−s) . (7)

For the set RZ×Z of all functions from Z× Z to R, convolution is the
operation ∗ : RZ×Z ×RZ×Z → RZ×Z such that for any f, g : Z×Z → R and any
(x, y) ∈ Z× Z:

(f ∗ g)(x, y) =
∞∑

j=−∞

∞∑
k=−∞

f(x+ j, y + k) g(−j,−k) . (8)
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Linear operators

Lemma 2. For any f, g, h ∈ RZ×Z and any α ∈ R, we have:

f ∗ g = g ∗ f (commutativity) (9)

f ∗ (g ∗ h) = (f ∗ g) ∗ h (associativity) (10)

f ∗ (g + h) = (f ∗ g) + (f ∗ h) (distributivity) (11)

α(f ∗ g) = (αf) ∗ g (associativity with ·) (12)



12/45

Linear operators

Definition 8. For any C ̸= ∅, the operator X :
⋃

n0,n1∈N C
[n0]×[n1] → CZ×Z

such that for any n0, n1 ∈ N, any f : [n0]× [n1] → C and any (x, y) ∈ Z2 we
have

X(f)(x, y) =

{
f(x, y) if (x, y) ∈ [n0]× [n1]

0 otherwise
(13)

is called the infinite 0-extension of digital images.

Definition 9. For any C ̸= ∅ and any n0, n1 ∈ N, the map
Rn0,n1 : C

Z×Z → C [n0]×[n1] such that for any f : Z× Z → C and any
(x, y) ∈ [n0]× [n1], we have Rn(f)(x, y) = f(x, y) is called the
(n0, n1)-restriction of infinite digital images.
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Linear operators

Definition 10. For any j, k ∈ Z, the operator Sjk : C
Z×Z → CZ×Z such that for

any x, y ∈ Z, we have Sjk(f)(x, y) = f(x+ j, y + k) is called the (x, y)-shift
of infinite digital images.

Definition 11. The operator L : CZ×Z → CZ×Z such that for any x, y ∈ Z, we
have L(f)(x, y) = f(−x,−y) is called the reflection of infinite digital images.
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Linear operators

Definition 12. For any n0, n1,m0,m1 ∈ N, any f ∈ C [n0]×[n1], any
g ∈ C [m0]×[m1], d0 = −

⌊
m0−1

2

⌋
and d1 = −

⌊
m1−1

2

⌋
, the convolution of f

and g is defined as

f ∗ g := Rn0n1(X(f) ∗ Sd0d1(X(g))) (14)

Lemma 3. For any n0, n1,m0,m1 ∈ N, any f ∈ C [n0]×[n1] and any
g ∈ C [m0]×[m1]:

f ⊗ g = f ∗ L(g) (15)
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Linear operators

Definition 13. For any σ ∈ R+ and any m ∈ N0 (typically: m ≥ 3σ), for the
function

w : R → R : t 7→ e
− t2

2σ2 (16)

and the number

N :=
m∑

j=−m

w(j) , (17)

the functions

g0 : [2m+ 1]× [1] → R : (x, 0) 7→ w(j −m)

N
(18)

g1 : [1]× [2m+ 1] → R : (0, y) 7→ w(j −m)

N
(19)

are called Gaussian averaging filters.
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Linear operators

f f ∗ g0 ∗ g1 f ∗ g0 ∗ g1

σ = 3.0 σ = 10.0
m = 9 m = 30
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Linear operators

f

2f − (f ∗ g0 ∗ g1)

σ = 1.0
m = 3
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Linear operators

f 2f − (f ∗ g0 ∗ g1)

σ = 1.0
m = 3
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Linear operators

Definition 14. The discrete derivatives of an infinite digital image
f : Z× Z → R are defined as

∂0f := g ∗ d0 (20)

∂1f := g ∗ d1 (21)

with

d0 =
1

2
(1, 0,−1) (22)

d1 =
1

2

 1

0

−1

 (23)

The discrete gradient is defined as

∇f =

(
∂0f

∂1f

)
, (24)

and |∇f | =
√

(∂0f)2 + (∂1f)2 is commonly referred to as its magnitude.
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Linear operators

f f ∗ d0 f ∗ d1
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Linear operators

f
√

(f ∗ d0)2 + (f ∗ d1)2
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Non-linear operators

Definition 15. Let n0, n1 ∈ N, let V = [n0]× [n1] and let C ⊆ R. Given

▶ a metric ds : V × V → R+
0 and a decreasing ws : R+

0 → [0, 1]

▶ a metric dc : C × C → R+
0 and a decreasing wc : R+

0 → [0, 1]

▶ a N : V → 2V that defines for every pixel v ∈ V a set N(v) ⊆ V called
the spatial neighborhood of v

▶ the ν : CV → RV , called normalization, such that for any digital image
f : V → C and any pixel v ∈ V :

ν(f)(v) =
∑

v′∈N(v)

ws(ds(v, v
′))wc(dc(f(v), f(v

′))) , (25)

the bilateral filter w.r.t. ds, ws, dc, wc and N is the β : CV → (RC)V such
that for any digital image f : V → C and any pixel v ∈ V :

β(f)(v) =
1

ν(f)(v)

∑
v′∈N(v)

ws(ds(v, v
′))wc(dc(f(v), f(v

′))) f(v′) (26)
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Non-linear operators

Example.

▶ ds(v, v
′) = ∥v − v′∥2 and, for a filter parameter σs > 0:

ws(x) =
1

σs

√
2π

exp

(
− x2

2σ2
s

)
(27)

▶ dc(g, g
′) = |g − g′| and, for a filter parameter σc > 0:

wc(x) =
1

1 + x2

σ2
c

(28)

▶ for a filter parameter n ∈ R+
0 :

N(v) = {v′ ∈ V | ds(v, v′) ≤ n} (29)
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Non-linear operators

Definition 16. Let n0, n1 ∈ N, let V = [n0]× [n1], let C ⊆ R and let
N : V → 2V define for every pixel v ∈ V a set N(v) ⊆ V called the spatial
neighborhood of v. The median operator wrt. N is the function
M : CV → CV such that for any f : V → C and any v ∈ V :

M(f)(v) = median f(N(v)) (30)
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Non-linear operators

Noisy image Filtered image

f M(f)
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Non-linear operators

Morphological operators

▶ We may identify any binary infinite digital image f : Z2 → {0, 1} with its
support set f−1(1) = {v ∈ Z2 | f(v) = 1}.

▶ This allows us to apply operations from the field of binary mathematical
morphology to binary infinite digital images.
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Non-linear operators

Image1 Binary image

f f ≥ 45

1By courtesy of Stephan Grill and his lab at the MPI of Molecular Cell Biology and Genetics.
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Non-linear operators

Definition 17. For any A,B ⊆ Z2, we define

A⊖B := {v ∈ Z2 | B + v ⊆ A} (31)

A⊕B := {v ∈ Z2 | −B + v ∩A ̸= ∅} (32)

and call these operations erosion and dilation. Moreover, we call the
operations

A ◦B := (A⊖B)⊕B (33)

A •B := (A⊕B)⊖B (34)

opening and closing.

Definition 18. For any (typically small) support set B called a structuring
element and any morphological operation ⊗, the operator
φ⊗B : {0, 1}Z×Z → {0, 1}Z×Z such that for any (infinite binary digital image)
f : Z2 → {0, 1} and any (pixel) v ∈ Z2, we have φ⊗B(f)(v) = 1 if and only if
v ∈ f−1(1)⊗B is called the morphological operator wrt. ⊗ and B.
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Non-linear operators

Binary image Erosion

f φ⊖B(f)
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Non-linear operators

Binary image Dilation

f φ⊕B(f)
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Non-linear operators

Binary image Opening

f φ◦B(f)
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Non-linear operators

Binary image Closing

f φ•B(f)
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Non-linear operators

Definition 19. For any n0, n1 ∈ N, the set V = [n0]× [n1] and the pixel grid
graph G = (V,E), an operator φ : NV

0 → NV
0 is called a (connected)

components operator if for any digital image f : V → N0 and any pixels
v, w ∈ V , we have φ(f)(v) = φ(f)(w) iff there exists a vw-path in G along
which all pixels have the color zero.
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Non-linear operators

Binary image Connected component labeling

f φ(f)
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Non-linear operators
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Non-linear operators

Definition 20. For any n0, n1 ∈ N, the set V = [n0]× [n1] and the pixel grid
graph G = (V,E), the distance operator φ : NV

0 → NV
0 is such that for any

digital image f : V → N0 and any pixel v ∈ V , the number φ(f)(v) is the
minimum distance in the pixel grid graph from v to a pixel w with f(w) = 1.
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Non-linear operators

Binary image Distance image

f φ(f)
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Non-linear operators
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Non-linear operators

For any set V of pixels and neighborhood function N : V → 2V ,
non-maximum suppression is the operator φNMS : RV → RV such that for
each digital image f : V → R and all pixels v ∈ V :

φNMS(f)(v) =

{
f(v) if f(v) = max f(N(v))

0 otherwise
(35)
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Edge and corner detection

Image1 Edge detection1

1https://en.wikipedia.org/wiki/Canny_edge_detector

https://en.wikipedia.org/wiki/Canny_edge_detector
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Edge and corner detection

Canny’s edge detection algorithm1 has four steps

1. Gradient computation from digital image f : V → R:

g =
√

∂0f + ∂1f std::hypot in C++ (36)

α = atan2(∂1f, ∂0f) std::atan2 in C++ (37)

2. Directional non-maximum suppression of g:

00

1

1

2

2

3

3

00

1

1

2

23

3

3. Double thresholding with θ0, θ1 ∈ R+
0 such that θ0 ≤ θ1: A (any) pixel

v ∈ V is taken considered to be a strong edge pixel iff θ1 ≤ g(v) and is
taken to be a weak edge pixel iff θ0 ≤ g(v) < θ1.

4. Weak edge classification: A (any) pixel v ∈ V is taken to be an edge pixel
iff (i) v is a strong edge pixel, or (ii) v is a weak edge pixel and there is a
strong edge pixel in the 8-neighborhood of v.

1J. Canny. A Computational Approach To Edge Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(6):679–698, 1986
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Edge and corner detection

Image1 Corner detection1

1https://en.wikipedia.org/wiki/Corner_detection

https://en.wikipedia.org/wiki/Corner_detection
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Edge and corner detection

Definition 21. Let n0, n1 ∈ N, let V = [n0]× [n1], let f : V → R a digital
image, let ∂0, ∂1 be discrete derivative operators, and let N : V → RV .

For each v ∈ V :

▶ Let A(v) be the |N(v)| × 2-matrix such that for every w ∈ N(v), we have

Aw·(v) = ((∂0f)(w), (∂1f)(w)) . (38)

▶ Let kv : N(v) → R+
0 such that

∑
w∈N(v) kv(w) = 1.

▶ Define the structure tensor of f at v wrt. kv as the 2× 2-matrix

Sk(f)(v) :=
∑

w∈N(v)

kv(w)AT
w·(v)Aw·(v) (39)

=
∑

w∈N(v)

kv(w)

(
(∂0f)

2(w) (∂0f)(w)(∂1f)(w)
(∂0f)(w)(∂1f)(w) (∂1f)

2(w)

)
.

(40)
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Edge and corner detection

Remark 2. Fix a direction by choosing r ∈ R2 with |r| = 1 and consider the
kv-weighted squared projection of the gradient of the digital image:

Pr(v) =
∑

w∈N(v)

kv(w)|Aw·(v) r|2 (41)

=
∑

w∈N(v)

kv(w) rTAT
w·(v)Aw·(v) r (42)

= rT

 ∑
w∈N(v)

kv(w)AT
w·(v)Aw·(v)

 r (43)

= rTS(v) r (44)

With the spectral decomposition

S(v) = σ1(v)s1(v)s
T
1 (v) + σ2(v)s2(v)s

T
2 (v) (45)

we obtain

Pr(v) = rT
(
σ1(v)s1(v)s

T
1 (v) + σ2(v)s2(v)s

T
2 (v)

)
r (46)

= σ1(v)|s1(v) · r|2 + σ2(v)|s2(v) · r|2 . (47)
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Edge and corner detection

Remark 3.

▶ If σ1 = σ2 = 0, we have Pr(v) = 0 for any direction r. I.e. the image is
constant.

▶ If σ1 > 0 and σ2 = 0, we can choose a direction r such that Pr(v) = 0.
I.e. the gradient of the image is non-zero and constant.

▶ If σ1, σ2 > 0, we cannot choose r such that Pr(v) = 0. I.e. the gradient of
the image varies across N(v).
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Edge and corner detection

Definition 22. Let V the set of pixels of a digital image, let S : V → R2×2 such
that for any v ∈ V , S(v) is the structure tensor of the image at pixel v, and let
σ1(v) ≥ σ2(v) ≥ 0 be the eigenvalues of S(v). Harris’ corner detector2 wrt. a
neighborhood function N : V → 2V refers to the function φNMS ◦ σ2.

2C. Harris and M. Stephens. A Combined Corner and Edge Detector. Alvey Vision Conference.
Vol. 15. 1988


