Machine Learning I

Bjoern Andres, Shengxian Zhao

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Contents. This part of the course introduces the concept of labeled data and the supervised learning problem.

Example: A medical test with $n \in \mathbb{N}$ design parameters $\theta \in \Theta = \mathbb{R}^n$ measures $m \in \mathbb{N}$ quantities and indicates by $y \in Y = \{0, 1\}$ whether a measurement $x \in X = \mathbb{R}^m$ is considered to be healthy (y = 0) or pathological (y = 1).

$$X \xrightarrow{g_{\theta}} Y$$

Example: A medical test with $n \in \mathbb{N}$ design parameters $\theta \in \Theta = \mathbb{R}^n$ measures $m \in \mathbb{N}$ quantities and indicates by $y \in Y = \{0, 1\}$ whether a measurement $x \in X = \mathbb{R}^m$ is considered to be healthy (y = 0) or pathological (y = 1).

$$X \xrightarrow{g_{\theta}} Y$$

Informally, **supervised learning** is the problem of finding, in a family $g: \Theta \to Y^X$ of functions, one function $g_{\theta}: X \to Y$ that minimizes a weighted sum of two objectives:

- ▶ g_{θ} deviates little from a finite set $\{(x_s, y_s)\}_{s \in S}$ of input-output-pairs, called labeled data
- ▶ g_{θ} has low complexity, as quantified by a function $R: \Theta \to \mathbb{R}^+_0$, called a regularizer

Remarks:

- ▶ The family *g* defines a parameterization of functions from inputs *X* to outputs *Y*.
- g can be chosen so as to constrain the set of functions from X to Y in the first place.
- ► For instance, Θ can be a set of forms, g the functions defined by these forms, and R the length of these forms.

We concentrate exclusively on the special case where Y is finite.

We concentrate exclusively on the special case where Y is finite.

To begin with, we even concentrate on the case where $Y=\{0,1\}.$ Hence, we consider a family $g\colon \Theta\to \{0,1\}^X.$

We concentrate exclusively on the special case where Y is finite.

To begin with, we even concentrate on the case where $Y=\{0,1\}.$ Hence, we consider a family $g\colon \Theta\to \{0,1\}^X.$

We allow ourselves to take a detour by not optimizing over a family $g: \Theta \to \{0,1\}^X$ directly but instead optimizing over a family $f: \Theta \to \mathbb{R}^X$ and defining g wrt. f via a function $L: \mathbb{R} \times \{0,1\} \to \mathbb{R}^+_0$, called a loss function, such that

$$\forall \theta \in \Theta \ \forall x \in X : \quad g_{\theta}(x) \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} \ L(f_{\theta}(x), \hat{y}) \ . \tag{1}$$

We concentrate exclusively on the special case where Y is finite.

To begin with, we even concentrate on the case where $Y = \{0, 1\}$. Hence, we consider a family $g \colon \Theta \to \{0, 1\}^X$.

We allow ourselves to take a detour by not optimizing over a family $g: \Theta \to \{0,1\}^X$ directly but instead optimizing over a family $f: \Theta \to \mathbb{R}^X$ and defining g wrt. f via a function $L: \mathbb{R} \times \{0,1\} \to \mathbb{R}^+_0$, called a loss function, such that

$$\forall \theta \in \Theta \ \forall x \in X : \quad g_{\theta}(x) \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} \ L(f_{\theta}(x), \hat{y}) \ . \tag{1}$$

Example: 0/1-loss

$$\forall r \in \mathbb{R} \ \forall \hat{y} \in \{0, 1\} \colon \quad L(r, \hat{y}) = \begin{cases} 0 & r = \hat{y} \\ 1 & \text{otherwise} \end{cases}$$
(2)

We concentrate exclusively on the special case where Y is finite.

To begin with, we even concentrate on the case where $Y = \{0, 1\}$. Hence, we consider a family $g \colon \Theta \to \{0, 1\}^X$.

We allow ourselves to take a detour by not optimizing over a family $g: \Theta \to \{0,1\}^X$ directly but instead optimizing over a family $f: \Theta \to \mathbb{R}^X$ and defining g wrt. f via a function $L: \mathbb{R} \times \{0,1\} \to \mathbb{R}^+_0$, called a loss function, such that

$$\forall \theta \in \Theta \ \forall x \in X : \quad g_{\theta}(x) \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} \ L(f_{\theta}(x), \hat{y}) \ . \tag{1}$$

Example: 0/1-loss

$$\forall r \in \mathbb{R} \ \forall \hat{y} \in \{0, 1\} \colon \quad L(r, \hat{y}) = \begin{cases} 0 & r = \hat{y} \\ 1 & \text{otherwise} \end{cases}$$
(2)

Next, we define the supervised learning problem rigorously.

Definition. For any finite, non-empty set S, called a set of **samples**, any $X \neq \emptyset$, called an **attribute space** and any $x : S \to X$, the tuple (S, X, x) is called **unlabeled data**.

Definition. For any finite, non-empty set S, called a set of **samples**, any $X \neq \emptyset$, called an **attribute space** and any $x : S \to X$, the tuple (S, X, x) is called **unlabeled data**.

For any $y: S \to \{0, 1\}$, given in addition and called a **labeling**, the tuple (S, X, x, y) is called **labeled data**.

Definition. For any labeled data T = (S, X, x, y), any $\Theta \neq \emptyset$ and $f : \Theta \to \mathbb{R}^X$, any $R : \Theta \to \mathbb{R}_0^+$, called a **regularizer**, any $L : \mathbb{R} \times \{0, 1\} \to \mathbb{R}_0^+$, called a **loss** function, and any $\lambda \in \mathbb{R}_0^+$:

 \blacktriangleright The instance of the supervised learning problem wrt. T, Θ, f, R, L and λ has the form

$$\inf_{\theta \in \Theta} \quad \lambda R(\theta) + \frac{1}{|S|} \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
(3)

Definition. For any labeled data T = (S, X, x, y), any $\Theta \neq \emptyset$ and $f : \Theta \to \mathbb{R}^X$, any $R : \Theta \to \mathbb{R}_0^+$, called a **regularizer**, any $L : \mathbb{R} \times \{0, 1\} \to \mathbb{R}_0^+$, called a **loss** function, and any $\lambda \in \mathbb{R}_0^+$:

 \blacktriangleright The instance of the supervised learning problem wrt. T, Θ, f, R, L and λ has the form

$$\inf_{\theta \in \Theta} \quad \lambda R(\theta) + \frac{1}{|S|} \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
(3)

 \blacktriangleright The instance of the separation problem wrt. T, Θ, f and R has the form

$$\inf_{\theta \in \Theta} R(\theta) \tag{4}$$

subject to
$$\forall s \in S : f_{\theta}(x_s) = y_s$$
 (5)

Definition. For any labeled data T = (S, X, x, y), any $\Theta \neq \emptyset$ and $f : \Theta \to \mathbb{R}^X$, any $R : \Theta \to \mathbb{R}_0^+$, called a **regularizer**, any $L : \mathbb{R} \times \{0, 1\} \to \mathbb{R}_0^+$, called a **loss** function, and any $\lambda \in \mathbb{R}_0^+$:

 \blacktriangleright The instance of the supervised learning problem wrt. T, Θ, f, R, L and λ has the form

$$\inf_{\theta \in \Theta} \quad \lambda R(\theta) + \frac{1}{|S|} \sum_{s \in S} L(f_{\theta}(x_s), y_s)$$
(3)

 \blacktriangleright The instance of the separation problem wrt. T, Θ, f and R has the form

$$\inf_{\theta \in \Theta} R(\theta) \tag{4}$$

subject to
$$\forall s \in S : f_{\theta}(x_s) = y_s$$
 (5)

▶ The instance of the **bounded separability problem** wrt. T, Θ, f, R and $m \in \mathbb{N}$ is to decide whether there exists a $\theta \in \Theta$ such that

$$R(\theta) \le m \tag{6}$$

$$\forall s \in S: \quad f_{\theta}(x_s) = y_s \tag{7}$$

Definition. For any unlabeled data T = (S, X, x), any $\hat{f} : X \to \mathbb{R}$ and any $L : \mathbb{R} \times \{0, 1\} \to \mathbb{R}_0^+$, the instance of the **inference problem** wrt. T, \hat{f} and L is defined as

$$\min_{y' \in \{0,1\}^S} \sum_{s \in S} L(\hat{f}(x_s), y'_s)$$
(8)

Lemma. The solutions to the inference problem are the $y:S\to\{0,1\}$ such that

$$\forall s \in S: \quad y_s \in \underset{\hat{y} \in \{0,1\}}{\operatorname{argmin}} L(\hat{f}(x_s), \hat{y}) \quad . \tag{9}$$

Moreover, if $\hat{f}(X) \subseteq \{0,1\}$ and L is the 01-loss, then

$$\forall s \in S: \quad y'_s = \hat{f}(x_s) \quad . \tag{10}$$

Summary. Supervised learning is an optimization problem. It consists in finding, in a family of functions, one function that minimizes a weighted sum of two objectives:

- 1. The function deviates little from given labeled data, as quantified by a loss function
- 2. The function has low complexity, as quantified by a regularizer.