Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Lemma 1. An operator $\varphi \colon \mathbb{R}^{[n_0] \times [n_1]} \to \mathbb{R}^{[n_0] \times [n_1]}$ is **linear** if and only if there exist $a \colon ([n_0] \times [n_1])^2 \to \mathbb{R}$ and $b \colon [n_0] \times [n_1] \to \mathbb{R}$ such that for any (image) $f \in \mathbb{R}^{[n_0] \times [n_1]}$ and any (pixel) $(x, y) \in [n_0] \times [n_1]$ we have

$$\varphi(f)(x,y) = \sum_{j=0}^{n_0-1} \sum_{k=0}^{n_1-1} a_{xyjk} f(j,k) + b_{xy} \quad . \tag{1}$$

More restrictive than such an operator with $(n_0n_1)^2 + (n_0n_1)$ coefficients is:

Even more restrictive is the typical setting in which we are given $m_0, m_1 \in \mathbb{N}$ and $g: [m_0] \times [m_1] \to \mathbb{R}$ and

$$= \sum_{j=0}^{m_0-1} \sum_{k=0}^{m_1-1} g(j,k) f\left(x+j - \left\lfloor \frac{m_0-1}{2} \right\rfloor, y+k - \left\lfloor \frac{m_1-1}{2} \right\rfloor\right)$$

Remark 1.

- 1. f needs to be extended in order for $\varphi(f)$ to be well-defined.
- 2. g defines the linear operator $\varphi =: \varphi_g$ uniquely.
- 3. g is itself a digital image.
- 4. The application of operators φ_g to images f defines a binary operation $f\otimes g:=\varphi_g(f).$

Definition 1. For the set $\mathbb{R}^{\mathbb{Z}}$ of all functions from \mathbb{Z} to \mathbb{R} , **convolution** is the operation $*: \mathbb{R}^{\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \to \mathbb{R}$ and any $t \in \mathbb{Z}$:

$$(f * g)(t) = \sum_{s=-\infty}^{\infty} f(t+s) g(-s)$$
 . (2)

For the set $\mathbb{R}^{\mathbb{Z}\times\mathbb{Z}}$ of all functions from $\mathbb{Z}\times\mathbb{Z}$ to \mathbb{R} , **convolution** is the operation $*: \mathbb{R}^{\mathbb{Z}\times\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}\times\mathbb{Z}} \to \mathbb{R}^{\mathbb{Z}\times\mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ and any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$:

$$(f * g)(x, y) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} f(x+j, y+k) g(-j, -k) .$$
 (3)

Lemma 2. For any $f, g, h \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ and any $\alpha \in \mathbb{R}$, we have:

- f * q = q * f(commutativity) (4) $f \ast (g \ast h) = (f \ast g) \ast h$ (associativity) (5)f * (g + h) = (f * g) + (f * h)(distributivity) (6) $\alpha(f * q) = (\alpha f) * q$
 - (associativity with \cdot) (7)

Definition 2. For any $C \neq \emptyset$, the operator $X : \bigcup_{n_0, n_1 \in \mathbb{N}} C^{[n_0] \times [n_1]} \to C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $n_0, n_1 \in \mathbb{N}$, any $f : [n_0] \times [n_1] \to C$ and any $(x, y) \in \mathbb{Z}^2$ we have

$$X(f)(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in [n_0] \times [n_1] \\ 0 & \text{otherwise} \end{cases}$$
(8)

is called the infinite 0-extension of digital images.

Definition 3. For any $C \neq \emptyset$ and any $n_0, n_1 \in \mathbb{N}$, the map $R_{n_0,n_1} \colon C^{\mathbb{Z} \times \mathbb{Z}} \to C^{[n_0] \times [n_1]}$ such that for any $f \colon \mathbb{Z} \times \mathbb{Z} \to C$ and any $(x, y) \in [n_0] \times [n_1]$, we have $R_n(f)(x, y) = f(x, y)$ is called the (n_0, n_1) -restriction of infinite digital images.

Definition 4. For any $j, k \in \mathbb{Z}$, the operator $S_{jk} : C^{\mathbb{Z} \times \mathbb{Z}} \to C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have $S_{jk}(f)(x, y) = f(x + j, y + k)$ is called the (x, y)-shift of infinite digital images.

Definition 5. The operator $L: C^{\mathbb{Z} \times \mathbb{Z}} \to C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have L(f)(x, y) = f(-x, -y) is called the **reflection** of infinite digital images.

Definition 6. For any $n_0, n_1, m_0, m_1 \in \mathbb{N}$, any $f \in C^{[n_0] \times [n_1]}$, any $g \in C^{[m_0] \times [m_1]}$, $d_0 = -\lfloor \frac{m_0 - 1}{2} \rfloor$ and $d_1 = -\lfloor \frac{m_1 - 1}{2} \rfloor$, the convolution of f and g is defined as

$$f * g := R_{n_0 n_1}(X(f) * S_{d_0 d_1}(X(g)))$$
(9)

Lemma 3. For any $n_0, n_1, m_0, m_1 \in \mathbb{N}$, any $f \in C^{[n_0] \times [n_1]}$ and any $g \in C^{[m_0] \times [m_1]}$:

$$f \otimes g = f * L(g) \tag{10}$$

Definition 7. For any $\sigma \in \mathbb{R}^+$ and any $m \in \mathbb{N}_0$ (typically: $m \ge 3\sigma$), for the function

$$w: \quad \mathbb{R} \to \mathbb{R}: \quad t \mapsto e^{-\frac{t^2}{2\sigma^2}} \tag{11}$$

and the number

$$N := \sum_{j=-m}^{m} w(j) ,$$
 (12)

the functions

$$g_0: \quad [2m+1] \times [1] \to \mathbb{R}: \quad (x,0) \mapsto \frac{w(j-m)}{N}$$
(13)

$$g_1: \quad [1] \times [2m+1] \to \mathbb{R}: \quad (0,y) \mapsto \frac{w(j-m)}{N}$$
(14)

are called Gaussian averaging filters.

 $\begin{aligned} \sigma &= 3.0 \\ m &= 9 \end{aligned}$

 $\begin{array}{l} \sigma = 10.0 \\ m = 30 \end{array}$

f

$$2f - (f \ast g_0 \ast g_1)$$

 $\begin{array}{l} \sigma = 1.0 \\ m = 3 \end{array}$

Definition 8. The discrete derivatives of an infinite digital image $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ are defined as

$$\partial_0 f := g * d_0 \tag{15}$$

$$\partial_1 f := g * d_1 \tag{16}$$

with

$$d_{0} = \frac{1}{2}(1, 0, -1)$$
(17)
$$d_{1} = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
(18)

The discrete gradient is defined as

$$\nabla f = \begin{pmatrix} \partial_0 f \\ \partial_1 f \end{pmatrix} , \tag{19}$$

and $|\nabla f| = \sqrt{(\partial_0 f)^2 + (\partial_1 f)^2}$ is commonly referred to as its magnitude.

$$\sqrt{(f * d_0)^2 + (f * d_1)^2}$$

