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Linear operators

Lemma 1. An operator : RI™0Ix[ml _y Rlmolx[n1] js finear if and only if there
exist a: ([no] x [n1])? — R and b: [no] x [n1] — R such that for any (image)
f € RoIX™I and any (pixel) (z,y) € [no] X [n1] we have

nog—1ln;—1

e(N)@y) =D D Gwyinf (G k) +boy - (1)

j=0 k=0

e(f)zy) =

Qzy.. . f + by

More restrictive than such an operator with (ngn1)? + (noni1) coefficients is:

o(f)(z,y) = ] BT

Gy : Say f + 0
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Linear operators

Even more restrictive is the typical setting in which we are given mg, m; € N
and g: [mo] X [m1] — R and

e = L v

= D> > 9GRS (i [Py k- [2])

Remark 1.

1. f needs to be extended in order for ¢(f) to be well-defined.
2. g defines the linear operator ¢ =: 4 uniquely.

3.
4

. The application of operators ¢, to images f defines a binary operation

g is itself a digital image.

F®g:=wpg(f)
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Linear operators

Definition 1. For the set R? of all functions from Z to R, convolution is the
operation *: R% x RZ — R” such that for any f,¢: Z — R and any t € Z:

(f*g)(t Z flt+s)g(=s) - (2)

S$=—00

For the set RZ*Z of all functions from Z x Z to R, convolution is the
operation *: RZ*% x R?*% — R?*% such that for any f,g: Z x Z — R and any
(z,y) €L XL

[e<) oo

(fx9)@y)= > > fle+iy+kg(—5—k) . (3)

Jj=—00 k=—o0
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Linear operators

Lemma 2. For any f,g,h € RZ*Z and any a € R, we have:
frxg=gxf (commutativity) (4)
frx(gxh)=(f*g)*xh (associativity) (5)
fx(g+h)=(fxg)+ (fxh) (distributivity) (6)
a(fxg)=(af)*g (associativity with ) (M
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Linear operators

Definition 2. For any C' # (), the operator X : U, . e colximl _, gExZ

such that for any ng,n1 € N, any f: [no] x [n1] — C and any (z,y) € Z* we
have

fx,y) if (z,y) € [no] x [n4]
0 otherwise

X(f)(z,y) = { (8)

is called the infinite 0-extension of digital images.

Definition 3. For any C # () and any no,n1 € N, the map

Rngony 2 CE¥% — ¢lmolxIml sych that for any f: Z x Z — C and any
(z,y) € [no] X [n1], we have R,.(f)(z,y) = f(z,y) is called the
(no,n1)-restriction of infinite digital images.
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Linear operators

Definition 4. For any j, k € Z, the operator S;i,: CZ*% — C**% such that for
any z,y € Z, we have S;i(f)(z,y) = f(z + j,y + k) is called the (z,y)-shift
of infinite digital images.

Definition 5. The operator L: CZ*% — C%X% sych that for any z,y € Z, we
have L(f)(z,y) = f(—z,—y) is called the reflection of infinite digital images.

7/14



Linear operators

Definition 6. For any ng,n1,mo,m1 € N, any f € Clmolx[nil apy
g € Clmolxtml gy = — | mo=1] and d; = — | ™4~], the convolution of f

and g is defined as

F*g:= Ruogn, (X(f) * Saga, (X(9))) 9)

Lemma 3. For any no,n1,mo,m1 € N, any f € C"oX["1] and any

ge Clmolx[mi].
f®g=f*L(g) (10)
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Linear operators

Definition 7. For any 0 € R" and any m € Ny (typically: m > 3¢), for the

function

2
ot
w: R—=R: t—e 202

and the number

the functions
go: [Pm+1x[1]—=-R: (z,0)—
gi: [IIxP2m+1 —-R: (0,y)—

are called Gaussian averaging filters.

w(j —m)

N

w(j —m)

N

(11)

(12)

(13)
(14)
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Linear operators

f*g0o*q

f*go*q

=10.0
m = 30

o
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Linear operators
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Linear operators

2f = (f *go*g1)
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Linear operators

Definition 8. The discrete derivatives of an infinite digital image
f:17Z xXZ — R are defined as

Oof = g+ do (15)
61f ::g*d1 (16)
with
1
do = 5(17(), -1) (17)
1
a=11 o (18)
)
—1

The discrete gradient is defined as

Vf= (g‘);) , (19)

and |V f| = /(00f)? + (01 f)? is commonly referred to as its magnitude.
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Linear operators

f*do f*d1
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Linear operators

V([ xdo)? + (f di)?
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