Computer Vision I

Bjoern Andres, Holger Heidrich

Machine Learning for Computer Vision TU Dresden

Winter Term 2022/2023

Lemma 1 . An operator $\varphi: \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]} \rightarrow \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]}$ is linear if and only if there exist $a:\left(\left[n_{0}\right] \times\left[n_{1}\right]\right)^{2} \rightarrow \mathbb{R}$ and $b:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow \mathbb{R}$ such that for any (image) $f \in \mathbb{R}^{\left[n_{0}\right] \times\left[n_{1}\right]}$ and any (pixel) $(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right]$ we have

$$
\begin{equation*}
\varphi(f)(x, y)=\sum_{j=0}^{n_{0}-1} \sum_{k=0}^{n_{1}-1} a_{x y j k} f(j, k)+b_{x y} \tag{1}
\end{equation*}
$$

More restrictive than such an operator with $\left(n_{0} n_{1}\right)^{2}+\left(n_{0} n_{1}\right)$ coefficients is:

Linear operators
Even more restrictive is the typical setting in which we are given $m_{0}, m_{1} \in \mathbb{N}$ and $g:\left[m_{0}\right] \times\left[m_{1}\right] \rightarrow \mathbb{R}$ and

$$
\begin{aligned}
\varphi(f)(x, y)= & \boxed{\bullet}(x, y) \\
g & S_{x y} f \\
= & \sum_{j=0}^{m_{0}-1} \sum_{k=0}^{m_{1}-1} g(j, k) f\left(x+j-\left\lfloor\frac{m_{0}-1}{2}\right\rfloor, y+k-\left\lfloor\frac{m_{1}-1}{2}\right\rfloor\right)
\end{aligned}
$$

Remark 1.

1. f needs to be extended in order for $\varphi(f)$ to be well-defined.
2. g defines the linear operator $\varphi=: \varphi_{g}$ uniquely.
3. g is itself a digital image.
4. The application of operators φ_{g} to images f defines a binary operation $f \otimes g:=\varphi_{g}(f)$.

Definition 1. For the set $\mathbb{R}^{\mathbb{Z}}$ of all functions from \mathbb{Z} to \mathbb{R}, convolution is the operation $*: \mathbb{R}^{\mathbb{Z}} \times \mathbb{R}^{\mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \rightarrow \mathbb{R}$ and any $t \in \mathbb{Z}$:

$$
\begin{equation*}
(f * g)(t)=\sum_{s=-\infty}^{\infty} f(t+s) g(-s) \tag{2}
\end{equation*}
$$

For the set $\mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ of all functions from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{R}, convolution is the operation $*: \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}} \times \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}} \rightarrow \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $f, g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ and any $(x, y) \in \mathbb{Z} \times \mathbb{Z}$:

$$
\begin{equation*}
(f * g)(x, y)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} f(x+j, y+k) g(-j,-k) \tag{3}
\end{equation*}
$$

Lemma 2. For any $f, g, h \in \mathbb{R}^{\mathbb{Z} \times \mathbb{Z}}$ and any $\alpha \in \mathbb{R}$, we have:

$$
\begin{align*}
f * g & =g * f \tag{4}\\
f *(g * h) & =(f * g) * h \tag{5}\\
f *(g+h) & =(f * g)+(f * h) \tag{6}\\
\alpha(f * g) & =(\alpha f) * g \tag{7}
\end{align*}
$$

(commutativity)
(associativity)
(distributivity)
(associativity with •)

Linear operators

Definition 2. For any $C \neq \emptyset$, the operator $X: \bigcup_{n_{0}, n_{1} \in \mathbb{N}} C^{\left[n_{0}\right] \times\left[n_{1}\right]} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $n_{0}, n_{1} \in \mathbb{N}$, any $f:\left[n_{0}\right] \times\left[n_{1}\right] \rightarrow C$ and any $(x, y) \in \mathbb{Z}^{2}$ we have

$$
X(f)(x, y)= \begin{cases}f(x, y) & \text { if }(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right] \tag{8}\\ 0 & \text { otherwise }\end{cases}
$$

is called the infinite 0 -extension of digital images.
Definition 3. For any $C \neq \emptyset$ and any $n_{0}, n_{1} \in \mathbb{N}$, the map $R_{n_{0}, n_{1}}: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\left[n_{0}\right] \times\left[n_{1}\right]}$ such that for any $f: \mathbb{Z} \times \mathbb{Z} \rightarrow C$ and any $(x, y) \in\left[n_{0}\right] \times\left[n_{1}\right]$, we have $R_{n}(f)(x, y)=f(x, y)$ is called the (n_{0}, n_{1})-restriction of infinite digital images.

Linear operators

Definition 4. For any $j, k \in \mathbb{Z}$, the operator $S_{j k}: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have $S_{j k}(f)(x, y)=f(x+j, y+k)$ is called the (x, y)-shift of infinite digital images.

Definition 5. The operator $L: C^{\mathbb{Z} \times \mathbb{Z}} \rightarrow C^{\mathbb{Z} \times \mathbb{Z}}$ such that for any $x, y \in \mathbb{Z}$, we have $L(f)(x, y)=f(-x,-y)$ is called the reflection of infinite digital images.

Definition 6. For any $n_{0}, n_{1}, m_{0}, m_{1} \in \mathbb{N}$, any $f \in C^{\left[n_{0}\right] \times\left[n_{1}\right]}$, any $g \in C^{\left[m_{0}\right] \times\left[m_{1}\right]}, d_{0}=-\left\lfloor\frac{m_{0}-1}{2}\right\rfloor$ and $d_{1}=-\left\lfloor\frac{m_{1}-1}{2}\right\rfloor$, the convolution of f and g is defined as

$$
\begin{equation*}
f * g:=R_{n_{0} n_{1}}\left(X(f) * S_{d_{0} d_{1}}(X(g))\right) \tag{9}
\end{equation*}
$$

Lemma 3. For any $n_{0}, n_{1}, m_{0}, m_{1} \in \mathbb{N}$, any $f \in C^{\left[n_{0}\right] \times\left[n_{1}\right]}$ and any $g \in C^{\left[m_{0}\right] \times\left[m_{1}\right]}$:

$$
\begin{equation*}
f \otimes g=f * L(g) \tag{10}
\end{equation*}
$$

Linear operators

Definition 7. For any $\sigma \in \mathbb{R}^{+}$and any $m \in \mathbb{N}_{0}$ (typically: $m \geq 3 \sigma$), for the function

$$
\begin{equation*}
w: \quad \mathbb{R} \rightarrow \mathbb{R}: \quad t \mapsto e^{-\frac{t^{2}}{2 \sigma^{2}}} \tag{11}
\end{equation*}
$$

and the number

$$
\begin{equation*}
N:=\sum_{j=-m}^{m} w(j) \tag{12}
\end{equation*}
$$

the functions

$$
\begin{array}{lll}
g_{0}: & {[2 m+1] \times[1] \rightarrow \mathbb{R}:} & (x, 0) \mapsto \frac{w(j-m)}{N} \\
g_{1}: & {[1] \times[2 m+1] \rightarrow \mathbb{R}:} & (0, y) \mapsto \frac{w(j-m)}{N} \tag{14}
\end{array}
$$

are called Gaussian averaging filters.

Linear operators

Linear operators
f

Linear operators

$$
2 f-\left(f * g_{0} * g_{1}\right)
$$

$$
\begin{gathered}
\sigma=1.0 \\
m=3
\end{gathered}
$$

Definition 8. The discrete derivatives of an infinite digital image $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ are defined as

$$
\begin{align*}
& \partial_{0} f:=g * d_{0} \tag{15}\\
& \partial_{1} f:=g * d_{1} \tag{16}
\end{align*}
$$

with

$$
\begin{align*}
d_{0} & =\frac{1}{2}(1,0,-1) \tag{17}\\
d_{1} & =\frac{1}{2}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) \tag{18}
\end{align*}
$$

The discrete gradient is defined as

$$
\begin{equation*}
\nabla f=\binom{\partial_{0} f}{\partial_{1} f} \tag{19}
\end{equation*}
$$

and $|\nabla f|=\sqrt{\left(\partial_{0} f\right)^{2}+\left(\partial_{1} f\right)^{2}}$ is commonly referred to as its magnitude.

Linear operators

$$
\sqrt{\left(f * d_{0}\right)^{2}+\left(f * d_{1}\right)^{2}}
$$

