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Deciding with Binary Decision Trees

Contents. This part of the course is about a special case of supervised
learning: the supervised learning of binary decision trees.

I We state the problem by defining labeled data, a family of functions,
a regularizer and a loss function

I We prove that the problem is hard to solve (technically: np-hard), by
relating it to the exact cover by 3-sets problem.
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Data

We consider binary attributes. More specifically, we consider some finite,
non-empty set V , called the set of attributes, and labeled data
T = (S,X, x, y) such that X = {0, 1}V .

Hence, x : S → {0, 1}V and y : S → {0, 1}.
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Definition. A tuple (V, Y,D,D′, d∗, E, δ, v, y) is called a V -variate
Y -valued binary decision tree (BDT) iff the following conditions hold:

1. V 6= ∅ is finite (set of variables)

2. Y 6= ∅ is finite (set of values)

3. (D ∪D′, E) is a finite, non-empty
directed binary tree with root d∗

4. every d ∈ D′ is a leaf

5. δ : E → {0, 1}
6. every d ∈ D has precisely two

out-edges, e = (d, d′), e′ = (d, d′′),
such that δ(e) = 0 and δ(e′) = 1

7. v : D → V

8. y : D′ → Y

d∗ vd∗

d1
yd1

d2 vd2
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yd3
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yd4
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d

d↓0 d↓1

0 1

0 1

Definition. For any BDT (V, Y,D,D′, d∗, E, δ, v, y), any d ∈ D and any
j ∈ {0, 1}, we let d↓j ∈ D ∪D′ the unique node such that
e = (d, d↓j) ∈ E and δ(e) = j.



6/18

Deciding with Binary Decision Trees

Definition. For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y) and any
d ∈ D ∪D′, the tuple θ[d] = (V, Y,D2, D

′
2, d, E

′, δ′, v′, y′) is called the
binary decision subtree of θ rooted at d iff

I (D2 ∪D′2, E′) is the subtree of (D ∪D′, E) rooted at d

I δ′, v′ and y′ are the restrictions of δ, v and y to the subsets D2, D′2
and E′

Lemma. For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y) and any
d ∈ D ∪D′, the binary decision subtree θ[d] is itself a V -variate Y -valued
BDT.
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Definition. For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y), the function
defined by θ is the fθ : {0, 1}V → Y such that ∀x ∈ {0, 1}V :

fθ(x) =


y(d∗) if D = ∅
fθ[d∗↓0](x) if D 6= ∅ ∧ xv(d∗) = 0

fθ[d∗↓1](x) if D 6= ∅ ∧ xv(d∗) = 1

=

{
y(d∗) if D = ∅
(1− xv(d∗))fθ[d∗↓0](x) + xv(d∗)fθ[d∗↓1](x) otherwise

Note. The set Θ of V -variate Y = {0, 1}-valued BDTs can be identified
with a subset of V -variate DNFs.
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Regularization

In order to quantify the complexity of BDTs, we consider the following
regularizer.

Definition. For any BDT θ = (V, Y,D,D′, d∗, E, δ, v, y), the depth of θ
is the R(θ) ∈ N such that

R(θ) =

{
0 if D = ∅
1 + max{R(θ[d∗↓0]), R(θ[d∗↓1])} otherwise

. (1)
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Loss function

We consider the 0/1-loss L, i.e.

∀r ∈ R ∀ŷ ∈ {0, 1} : L(r, ŷ) =

{
0 r = ŷ

1 otherwise
. (2)
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Definition. For any λ ∈ R+
0 , the instance of the supervised learning

problem of BDTs with respect to T, L,R and λ has the form

min
θ∈Θ

λR(θ) +
1

|S|
∑
s∈S

L(fθ(xs), ys) (3)

Definition. For any m ∈ N, the bounded depth BDT problem w.r.t. T
and m is to decide whether there exists a BDT
θ = (V, Y,D,D′, d∗, E, δ, v, y′) such that

R(θ) ≤ m (4)

∀s ∈ S : fθ(xs) = ys . (5)
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Next, we will reduce the hard-to-solve (technically: np-hard) exact cover
by 3-sets problem to the bounded depth BDT problem, thereby showing
that the latter problem is hard to solve (np-hard) as well. The reduction is
by Haussler (1988).

Definition. For any set S, a cover Σ of S is called exact iff the elements
of Σ are pairwise disjoint.

Definition. Let S be any set, and let ∅ /∈ Σ ⊆ 2S .

Deciding whether there exists a Σ′ ⊆ Σ such that Σ′ is an exact cover of
S is called the instance of the exact cover problem w.r.t. S and Σ.

Additionally, if |S| is an integer multiple of three and any U ∈ Σ is such
that |U | = 3, the instance of the exact cover problem w.r.t. S and Σ is
also called the instance of the exact cover by 3-sets problem with
respect to S and Σ.
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Proof. For any instance (S′,Σ) of the exact cover by 3-sets problem and
the n ∈ N such that |S′| = 3n, we construct the instance of the
m-bounded depth BDT problem such that

I V = Σ
I S = S′ ∪· {0}
I x : S → {0, 1}Σ such that x0 = 0 and

∀s ∈ S′ ∀σ ∈ Σ: xs(σ) =

{
1 if s ∈ σ
0 otherwise

(6)

I y : S → {0, 1} such that y0 = 0 and ∀s ∈ S′ : ys = 1.
I m = n

We show that the instance the exact cover problem has a solution iff the
instance of the bounded depth BDT problem has a solution.
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(⇒) Let Σ′ ⊆ Σ a solution to the instance of the exact cover problem.

Consider any order on Σ′ and the bijection σ′ : [n]→ Σ′ induced by this
order.

We show that the BDT θ depicted below solves the instance of the
bounded depth BDT problem.

σ′0

1

1

σ′1

1

1

0

· · ·

0

σ′m−1

10

10

0
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σ′0

1

1

σ′1

1

1

0

· · ·

0

σ′m−1

10

10

0

The BDT satisfies R(θ) = m.

The BDT decides the labeled data correctly because

I fθ(x0) = 0 = y0

I At each of the m interior nodes, three additional elements of S′ are
mapped to 1. Thus, all 3m many elements s ∈ S′ are mapped to 1.
That is ∀s ∈ S′ : fθ(xs) = 1 = ys.



15/18

Deciding with Binary Decision Trees

(⇐) Let θ = (V, Y,D,D′, d∗, E, δ, σ, y′) a BDT that solves the instance of
the bounded depth BDT problem.

W.l.o.g., we assume, for any interior node d ∈ D, that d↓1 is a leaf and
y′(d↓1) = 1.

Hence, θ is of the form depicted below.

σ′0

1

1

σ′1
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1
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0

σ′N−1
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Therefore:

∀x ∈ X : fθ(x) =

{
1 if ∃j ∈ [N ] : x(σj) = 1

0 otherwise
(7)

Thus,

∀s ∈ S : fθ(xs) =

{
1 if ∃j ∈ [N ] : s ∈ σj
0 otherwise

, (8)

by definition of x in (6).

Consequently,

N−1⋃
j=0

σj = S′ , (9)

by definition of y such that ∀s ∈ S′ : ys = 1.
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Moreover, N = m, because

3m = |S′| (9)=

∣∣∣∣∣∣
N−1⋃
j=0

σj

∣∣∣∣∣∣ ≤
N−1∑
j=0

|σj | =
N−1∑
j=0

3 = 3N
(4)

≤ 3m .

Therefore:

∀{j, l} ∈
(

[N ]
2

)
: σk ∩ σl = ∅ (10)

Thus,

N−1⋃
j=0

σj

is a solution to the instance of the exact cover by 3-sets problem defined
by (S′,Σ), by (9) and (10).

�
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Summary:

I BDTs can be identified with a subset of DNFs.

I Supervised learning of BDTs is hard. More specifically, the np-hard
exact cover by 3-sets problem is reducible to the bounded depth BDT
problem by construction of Haussler data.

Further reading: Readers who are not familiar with the exact cover by
3-sets problem or the set cover problem will find proofs of their
np-hardness in Appendicies A.1–A.4 of the lecture notes.


